Surgical Management of Maxillofacial Injuries in Iraq

Tahir Nazzal Aldelaimi*
Assistant Professor, Department of Oral & Maxillofacial Surgery, College of Dentistry, Anbar University, Iraq

Abstract

Background: One of the most demanding aspects of emergency medicine is the management of patients who have suffered facial trauma. Difficult circumstances such as the high number of casualties, severity of the facial wounds, coupled with the limited number of operating rooms and hospital beds, were a constant challenge to the surgeons.

Aims of Study: This study discusses types of maxillofacial injuries and their surgical management.

Materials & methods: The following study focuses on maxillofacial injuries that were treated at Maxillofacial Unit, Ramadi Teaching Hospital and Department of Oral & Maxillofacial Surgery, College of Dentistry, Anbar University, Iraq. Total of (518) cases were chosen on the basis of them being only oral and maxillofacial injuries including 325 males and 193 females with age range from 8 to 75 years old.

Results & conclusions: Most cases were in the age group (20-29) years, 312 (60.2%) patients were injured with missile fragments, isolated soft tissue injuries were found in 56 (10.8%) while, skeletal injuries were found in 462 (89.2%), facial nerve injuries which found in 57 (11%) patients, 119 (40%) patients had mandibular fractures were treated conservatively and 179 (60%) patients were treated by direct skeletal fixation.

Keywords: Maxillofacial trauma; War injuries; Missile; Soft tissue injuries; Skeletal injuries

Introduction

War continues to be the best school for surgeons. Historically, military conflicts had provided significant opportunities for the advancement of trauma surgery 1. Banks 2 stated that missile injuries by their special nature have lessons applicable to the general understanding of facial trauma.

Maxillofacial region comprises a complex anatomical arrangement of bone and soft tissues. Contained within the face are systems that control specialized functions including seeing, hearing, smelling, breathing, eating, and talking. Also, the vital structures in the head and neck region are intimately associated. This complex anatomy makes missile injuries affecting this region one of the most complexand challenging problems facing surgeons. The importance of an oral and maxillofacial surgeon on the casualty team was proved in the Vietnam War when the medical care given to American soldiers in this war was outstanding [3-5]. The primary phase deals with survival of the patient by maintenance of hemodynamic and airway functions. In the intermediate phase, supportive care such as antibiotic prophylaxis and treatment of infection, control of bleeding, and tissue debridement are done. The third phase is the reconstructive phase [6-8]. Modern advances in military weapons have undoubtedly resulted in an ever increasing incidence of injuries in armed conflicts. However, the world’s major wars have produced many advances in the management and treatment of wounds. The introduction of a wide range of potent antibiotics, improved anesthetic techniques and better postoperative care has all added to greatly increasing the survival rate of casualties. Anbar is the largest province in Iraq in surface area (more than 32%), with a population of about 1.5 million, forms western borders. Iraq in general and Anbar in particular became the world’s battlefield for terrorist attack to many civilians by different types of weapons including explosive cars, explosive belts, refle bullets and handgun bullets. Every conceivable type of weapon has been used, which has resulted in the full spectrum of violent injuries. The severity of injuries ranged from simple facial laceration and dentoalveolar fractures of the jaws to injuries that are incompatible with life.

Patients and Methods

During the period from May 2003 to December 2010, a total of (518) cases were treated at Maxillofacial Unit, Ramadi Teaching Hospital, and Department of Oral & Maxillofacial Surgery, College of Dentistry, Anbar University, Iraq. 325 Patients were males and 193 were females, their age range from 8 to 75 years old with a mean age of 41.2 years old. Of those these cases had sustained only maxillofacial injuries and were included in this study. Patients that came in with combined maxillofacial and other injuries were triaged appropriately and treated by other specialists according to priority, but were not included in this study.

According to Stump et al. [9] Wounds were classified into penetrating, perforating, and avulsive wounds. Missiles were divided into high velocity rifle bullets, low-velocity missiles (includes handgun bullets, airgun, and shotgun), and fragments. Injuries were divided into isolated soft tissue wounds and skeletal injuries, the later were further divided into mandibular fractures, mid-face fractures, and both mandibular and midface fractures. In emergency room, for all patients included in the study, a standardized case sheet form was made that includes: history, primary survey, life saving procedures, secondary survey, definitive treatment, intermediate phase, and rehabilitation. Patients in this study received immediate care According to ATLS approach to maintain or establish adequate airway, to monitor vital signs and to initiate an intravenous line. The facial structures of each patient were appropriately examined by radiograph and/or CT scan. Surgical priorities were then decided. All of the wounded received surgical treatment ranging from debridement and suturing to immediate reconstruction of facial structures. All surgeries were performed under general anesthesia through either intranasal or intraoral endotracheal tubes. Tracheostomies, whether emergency or elective, were made as indicated. Timing of primary surgery was decided according to many

*Corresponding author: Tahir Nazzal Aldelaimi, Assistant Professor, Department of Oral & Maxillofacial Surgery, College of Dentistry, Anbar University, Iraq. E-mail: tahir_aldeilami@yahoo.com

Received October 16, 2011; Accepted December 21, 2011; Published January 05, 2012

Copyright: © 2012 Aldelaimi TN. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
factors including: the need of a lifesaving procedure, patient’s general condition, past-medical history of the patient as well as the presence of associated injuries. Theater availability was a crucial factor in times of mass casualties. After considering all the previously mentioned factors, primary surgery was executed as early as possible to avoid infection. When patient conditions and circumstances allowed, definitive care of maxillofacial injury was attempted at the initial surgery. All patients were placed on systemic antibiotic cover that consisted of Metronidazole 500mg × 3 IV. And Cefotaxime 1g × 4 IV were used; tetanus prophylaxis was not available always in our hospital (Figure 1, 2, 3, 4, 5 and 6).

Results

Patient sample in this study composed of (518) patients, with age range from 8 to 75 years old; mean was 41.2 years old who were treated at Oral & Maxillofacial Surgery Department, College of Dentistry, Anbar university and Maxillofacial unit at Ramadi Teaching Hospital, Anbar, Iraq, including 325 males and 193 females. Most cases were in the age group (20-29) years (Table 1). Regarding type of missile; 312 (60.2%) patients were injured with missile fragments of explosive cars, explosive belts, mines, mortars, IED and grenades while patients were injured with bullets included 128 (24.7%) rifle bullets, 61 (11.6%) handgun bullets, and 16 (3.1%) airgun pellets. According to site of injuries, isolated soft tissue injuries were found in 56 (10.8%) while, skeletal injuries were found in 462 (89.2%) of patients including that mandibular fractures were found in 298 (57.5%) patients, while middle third fractures were found in 164 (31.7%) patients. Regarding the need for airway management 56 (10.8%) patients needed emergency tracheostomy under local anesthesia at emergency room and 17 (3.3%) patients needed tracheostomy because of critical postoperative period due to edema of the series had tracheostomy eventually. Only 23 (4.4%) patients were presented with active bleeding which would not stop without intervention including 6 (1%) patients had injury to great vessels. Overall Mortality was 2%. One of the mortalities was due to direct brain damage caused by the missile or due to complication involving CNS (brain abscess, meningitis).
found to have midface fractures, 64 (40%) patients had conservative
K wire in 18 (6%) patients. Furthermore, 164 (41%) patients were
transosseus wiring in 122 (41%) patients, miniplates in 28 (9.4%)
179 (60%) patients were treated by direct skeletal fixation included;
(40%) were treated conservatively due to reasons including unstable
with Iodoform pack.

19.6% patients presented extensive soft tissue loss and was packed
in 16 (28.6%) patients with mild to moderate soft tissue loss while 11
transposition, and rotation flaps was used for immediate reconstruction
after undermining in 29b (51.8%) patients and local advancement,
wounds that treated by primary closure where suturing was done
lacerations and injuries of soft tissues as part of perforating and avulsive
region was facial nerve injuries which found in 57 (11%) patients and
or CT scan for all patients. In 18 (3.5%) patients CT scan was ordered to exclude
infracranial injury and 25 (4.8%) patients CT scan was ordered to
evaluate orbital skeleton, while in 13 (2.5%) patients CT scan was
ordered for better localization of retained missiles.

The most commonly found injury of structures of maxillofacial
region was facial nerve injuries which found in 57 (11%) patients and
ophthalmic injury was found in 24 (4.6%) patients while 11 (2.1%)
patients had injuries to the neck (vascular, laryngotracheal, and
neurogenic) and 19 (3.7%) patients had injury to the CNS and 5 (0.9%)
patients had injuries to the lachrymal system.

Regarding treatment; In this study 56 patients had extensive
lacerations and injuries of soft tissues as part of perforating and avulsive
wounds that treated by primary closure where suturing was done
after undermining in 29b (51.8%) patients and local advancement,
transposition, and rotation flaps was used for immediate reconstruction
in 16 (28.6%) patients with mild to moderate soft tissue loss while 11
(19.6%) patients presented extensive soft tissue loss and was packed
with Iodoform pack.

Regarding treatment of 298 patients of mandibular fractures; 119
(40%) were treated conservatively due to reasons including unstable
general condition utilizing arch bar, or eyelet wiring as indicated, while
179 (60%) patients were treated by direct skeletal fixation included;
transosseous wiring in 122 (41%) patients, miniplates in 28 (9.4%)
patients, reconstruction plate in 11 (3.7%) patient and intramandiblular
K wire in 18(6%) patients. Furthermore; The treatment of (164) patients
found to have midface fractures, 64 (40%) patients had conservative
treatment and 100 (60%) required active treatment including 14 (8.5%)
patients had localized fragmentation of the maxillary alveolus with loss
of multiple teeth that required suturing only and 8 (4.9%) patients were
-treated by packing maxillary sinus with antrostomy for supporting
communited orbital floor fractures, 59 (36%) patients were treated
by suspension wires with IMF, 19 (11.6%) patients were treated using
multiple transosseous wires approached through lacerations caused by
the missile.

Discussion

Peter Banks [2] stated that bullet wounds are a feature of terrorist and
guerrilla war while fragment injury from bomb explosions is the
hallmark of conventional war and terrorist attacks. The distribution of
types of missiles in the current study reflects the bizarre nature of
the conflict taking place. Iraq has become the field of the third
world war of terrorists for the last two years and the war is a combination
of conventional war, civil unrest, crimes, and terrorism. The severity
of these injuries depends on the type of missile site of injuries and
the amount of soft tissue loss and bone destroyed. Classification
of injuries is a useful procedure for the clinicians to communicate with
each other by using a brief terminology rather than lengthy descriptions
of injuries sustained. Classification should adequately describe the site,
extent and nature of the hard and soft tissue injuries.

In high-velocity missile injury, large amounts of energy are
transferred to the tissues of the body and result in massive injury to soft
tissue and ablation of cortical bone. Airway disruption is significantly
more likely after a high-velocity injury this demonstrated in the current
study where high percent of patients who needed airway management
where injured by high velocity missile.

Blast injury survivors usually experience multiple injuries that are
generated by gas contamination. Our results confirm the
importance of the secondary blast injury that sends objects flying
through the air as well as imparting high velocity to the resulting
fragments as the main wounding agent in survivors and the importance
of looking for these injuries and cast a light on the changing trend in
injuries caused by missiles characterized by the emerging incidence of
multiple hits to multiple body regions in survivors. The first 24 hours
from the time of injury is the most suitable time for primary closure
and after that all wounds should be packed open. However, favorable
blood supply to the face coupled with the fact that in the face the whole
of the wound tract in most of the cases is available for surgical excision
allowed primary closure of extensive lacerations in this study. Early
operative repair of mandibular fractures and the reconstitution of
the soft tissue position are critical in obtaining optimal aesthetic and
functional results and it is important that the remaining segments of
the mandible be held in an anatomic position throughout the period
of soft tissue and bone reconstruction to limit the magnitude of the
deforaminence therefore active treatment was undertaken for mandibular
fractures cases including a closed reduction and indirect fixation was
done in the treatment of comminuted fractures.

References

Craniofac Surg 19: 300-305.

Rowe and Williams Maxillofacial Injuries, 2nd ed, Churchill Livingstone,

4. Maughon JS (1970) An inquiry into the nature of wounds resulting in killed

