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Introduction
Automatic Programming (AP) solves problems iteratively by 

evaluating and further optimising candidate solutions represented as 
computer programs. One modern approach to AP are the grammar 
based techniques, notably: Grammatical Evolution (GE) [1], which 
follows the evolutionary algorithm paradigm; Grammatical Swarm 
(GS), a particle swarm optimisation approach [2]; and Grammatical 
Herding (GH) which takes inspiration from the herding of mammals 
[3]. The grammar-based techniques are an example of bio-inspired 
artificial intelligence, with the GE algorithm inspired by the biological 
process for generating a protein. In this process, the genome consisting 
of DNA (this corresponds to the binary string in GE) is transcribed to 
RNA (the grammar in GE) and translated into amino acid sequences 
and used in the protein resulting in the phenotype (the output program 
in GE).

This family of techniques has been incorrectly compared to Genetic 
Programming (GP), but both approaches are fundamentally different 
in their methodologies. The main fundamental differences are found 
in both their crossover and mutation functions. GP also manipulates 
code directly as a tree, whereas the grammar techniques instead 
manipulate a binary string that is subsequently mapped via a grammar 
to executable code. This mapping process is what sets the grammar 
techniques apart as they can be considered language independent, 
able to evolve code given (usually) a context free grammar expressed 
in BNF. The fundamental differences between these methodologies are 
further discussed in detail in [4] and a full exploration of the crossover 
operation can be found [5].

However, evolution with these algorithms takes a significant 
number of iterations, each of which requires usually hundreds of 
unique candidate evaluations to solve a problem. There is a scaling 
problem as the number of candidates requiring evaluation increases 
substantially with the complexity of the problem due to the increasing 
size of the search space. Additionally, there is no guarantee that the 
final generated solution will be optimal, or meet a given success criteria 
defined by the fitness function, with the search often becoming trapped 
in local optima.

This paper discusses the development of a novel grammar-based 

hybrid algorithm devised to further improve the efficiency of the 
problem solving process. Our new solution, seeded Grammatical 
Evolution (sGE), takes the efficiency advantages from a swarm-based 
technique (GH) and the optimisation advantages of Grammatical 
Evolution with the aim to further enhance the current state of the art.

Background and Motivation
Evolutionary algorithms, whilst being a powerful technique, 

take a significant amount of processing time to solve a problem due 
to the number of individual candidate evaluations required. Natural 
evolution is a slow process of trial and improvement taking millions 
of years; its computational equivalent (whilst not taking quite as 
long) suffers from the same blind watchmaker method [6] of iterative 
improvement. Simply put, the solutions are not designed, but found 
through an artificial form of natural selection. 

Whilst the physical time taken can be significantly reduced 
through parallelism and an increase of processing power, an alternative 
approach would be to reduce the total number of generations and the 
number of individual evaluations required to achieve the objective. 
In a previous study [3], it was noted that Grammatical Herding was 
more efficient at generating a solution, but this was at the sacrifice of 
optimisation. In certain real world applications, a solution needs to 
be generated quickly, but sufficiently optimised to achieve the desired 
objective, especially if autonomous agents are to be human competitive.

This understanding from our previous research provided the insight 
that led us to the new hybrid algorithm discussed here which uses 
Grammatical Herding to seed Grammatical Evolution. The next two 
sections identify the principle differences between these two algorithms.
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Abstract
Evolutionary Algorithms, although powerful, are known to be wasteful and time consuming, requiring the 

evaluation of a large number of candidates. However the strength of the methodology is their ability to continually 
optimise the population hopefully ensuring a near optimal final solution. When applied to automatic programming 
tasks, the same limitations are observed, notably the time taken to develop a solution. An alternate, swarm-based 
method ‘Grammatical Herding’ suffers from the opposite concerns. Whilst it generates moderate fitness solutions 
quickly, these candidates often lack the optimisation of solutions generated via an evolutionary approach. This study 
details a hybrid technique ‘Seeded Grammatical Evolution’ where Grammatical Herding (GH) is used to seed the 
initial population of a Grammatical Evolution (GE) algorithm, with the result that the final solution is produced faster 
than one produced by GE alone and more effective (fitter) than one produced by GH. In this paper, we explore 
the background to the study including the initial work that inspired the approach. We also discuss the design of 
the algorithm and finally the results. We conclude that the hybrid approach is not only capable of producing a fast 
solution but also achieves state of the art results on a standard benchmark problem, the Santa Fe Trail.
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Grammatical evolution

Grammatical Evolution (GE) is a genetic algorithm based 
automatic programming method where candidate solutions are 
evolved over repeated generations [1]. The system was designed in part 
to avoid some of the complications presented in genetic programming 
(an alternate program synthesis method). By manipulating a bit string 
before mapping via usually a context free grammar, the candidate 
solution can be evolved without the need to directly manipulate code. 
The flow diagram for the method is shown in Figure 1.

This method has been further developed with Constituent 
Grammatical Evolution [7]. This takes additional bio-inspiration from 
the concepts of constituent genes and conditional behaviour switching 
producing state-of-the art results on various benchmark problems such 
as the Santa Fe Trail problem.

Grammatical herding

We recently described a novel automatic programming algorithm 
called Grammatical Herding [3]. The aim of the algorithm is to use 
a swarm-based search heuristic for automatic programming in an 
arbitrary language. Many swarm systems have demonstrated that 
simple rules can produce complex results, such as Boids [8] or Particle 
Swarm Optimisation [9]. It is from the latter that Grammatical Herding 
takes its initial inspiration. Instead of looking to insects, it bases its rule 
set on the movement of mammals. 

Utilising the Grammatical Evolution genotype to phenotype 
mapping process and inspiration from herd movements, it treats 
the possible solution space as an environment and drives candidates 
towards areas of the search space known to produce high fitness 
solutions. A flow diagram for our algorithm is provided in Figure 2.

In Grammatical Herding, three classes of agents are maintained. 
Firstly there is the herd, which contains all agents, equivalent to the 
population in standard genetic algorithms. Within the herd, there 

are ‘Betas’, a subset of the fittest agents, which are used to direct the 
movements of the herd based on their best location and fitness. Within 
the Betas, a final subset of agents is maintained known as the ‘Alphas’. 
The Alphas are the Betas with the highest fitness. These are used to steer 
underperforming agents by setting their current location to the best 
location of the Alphas. This has the effect of “herding” weaker members 
of the herd towards higher fitness areas within the search space. The 
inspiration from this comes directly from observations of herds of 
horses in the wild where stallions drive weaker/younger members of 
the herd towards the Alpha mares (Figure 3). 

The PB-location (Personal Best location) is the multi-dimensional 
coordinate within the search space where an agent achieved its highest 
fitness. For more details on the design of the algorithm [3]. 

GH was selected as the swarm algorithm to seed GE in this paper as 
it shares the same mapping process. This also allowed us to use the same 
system for generating the initial genome string [10-13]. This limited the 
risk of additional programmatic bias in the implementation.

Seeded Grammatical Evolution
In this section, we discuss the design and implementation of the 

hybrid algorithm. The algorithm has two main stages, the Seeding Stage 
where GH is used and the Optimising Stage where GE is used (Figure 
4). This section specifically focuses on the seeding process and the 
criteria for ‘handover’ before the experimental results.

Design

For this initial study, both algorithms were used unmodified, with 
Figure 1: Design of the Grammatical Evolution algorithm.

Figure 2: Design of the Grammatical Herding algorithm.
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the focus being on using GH to seed the initial population of GE. 
However, this required that two key decisions be made, notably: 

1.	 At what threshold should the algorithm switch from swarm to 
evolutionary computation?

2.	 How should the GE population be seeded, and what ratio of the 
GH herd should form the GE population? 

These considerations are discussed in detail over the following 
sections. For the purpose of this discussion, ‘threshold’ refers to a 
value-based criterion for performing handover. Handover is the 
process of moving from the seed algorithm (GH) to the optimisation 
algorithm (GE).

Fitness threshold

The fitness threshold changeover involved moving from GH to 
GE when a specific fitness had been achieved by one of the agents 
within the herd. The principle concept behind this method was to 
take advantage of the speed that GH was able to traverse the possible 
search space. It had been noted in a previous study [3] that GH was 
able to achieve a fitness of over 50% within relatively little iteration. 
The hope was that, by using this method, the high fitness areas within 
the search environment could be identified quickly and passed to GE 
for more fine-grained optimisation. For a pilot study, four different 
fitness thresholds were trialled (20%, 40%, 60% and 80%) to gauge their 
performance. This preliminary investigation indicated that the 40% to 
60% fitness threshold experiments produced the best results. Due to 
this, a threshold of 50% was set in the main study. It was assumed that 
this produced useful results, as although a strong population had been 

generated, the swarm had not yet converged (ensuring high genetic 
diversity).

Iteration threshold

In addition to the fitness threshold, an iteration threshold was set 
for the GH stage. This defined when the changeover occurred after a 
fixed number of iterations had been completed. The reasoning behind 
this second threshold was as a fallback position if GH was unable 
to find a high fitness solution. By placing a limit on the number of 
iterations, GE could automatically take over if the GH algorithm was 
unsuccessful.

For the purpose of this algorithm, the iteration threshold was set 
at 100 iterations.

Seed ratio

A final consideration was how many members of the GH herd 
should be selected for breeding. Initially, the thought was to transition 
the whole herd into the GE population (a 100% seed ratio). However, 
this transition process could also be an opportunity to add some 
additional genetic diversity into the initial GE population. With that 
thought considered, the main study was comprised of four experiments 
(each containing 100 individual runs) each utilising a different seed 
ratio. The seed ratios explored in this study were 25%, 50%, 75% and 
100% (i.e. full population handover).

Experimental Results
In this section, we discuss the results from our initial study on the 

Santa Fe Trail problem. The Santa Fe Trail problem was selected due 
to the quality of the background research in this area. As a benchmark 
test, the Santa Fe Trail problem has a very clear objective with several 
well-documented solutions, allowing us to compare final results with 
other AP algorithms such as genetic programming. 

Solving the trail involves finding a set of rules that allow an agent 
to find food along a predefined path with gaps. The agent is able to 
sense one step ahead of itself, turn left and right, and move forward. 
The quality of the final solution is ascertained by counting the number 
of ‘steps’ taken to complete the trail, the lower the number of steps the 
stronger the solution. Currently the best-published solution (according 
to our review of the literature) is the one discussed by Georgiou and 
Teahan [7] which takes 337 steps. The fitness of each candidate solution 
is quantified by the amount of food the agent is able to eat along the 
trail with a maximum number of 89 (100% fitness).

Each experiment was conducted using the settings for GH and 
GE listed in Table 1. These settings were based on research conducted 
by Headleand and Teahan [3] and through some preliminary 
benchmarking between GH and GE. Our initial benchmarking led us 
to believe that these setting may be optimal for this problem. 

The noticeable differences in settings are the maximum and 
minimum number of codons as GE utilises a varied length string; GH 
by comparison uses a fixed length string. Also, note that GE mutates a 
small number of the population; GH, however, sets all Alphas to wander 
randomly within the environment. The crossover in GE is fixed at 0.7 
in these experiments; in GH, however, the ‘crossover’ depends on the 
relative position of the agent’s current personal best (PB) location and 
the PB location of the Beta it is moving towards, utilising a weighted 
average function described in [3].

Each experimental set consisted of 100 individual runs. Each run 
was given a maximum of 500 to find a solution.

Figure 3: Two stallions drive a herd of feral horses forward. Photo taken at a 
ranch in North America. 

Figure 4: Design of the seeded Grammatical Evolution algorithm.
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The hybrid algorithm was highly successful at finding a solution, 
with only 5 out of 400 unable to find a solution. This is a failure rate of 
1.25% for the hybrid algorithm, as opposed to 11% for GH and 13% for 
GE, a significant improvement. 

Table 2 displays further results from our initial study. The columns 
represent the results after four experimental sets of 100 runs using the 
various seed ratios as discussed in the previous section. The aim of this 
research was to see if a hybrid technique could improve the time taken 
by GE to find a solution, and to ascertain if GE could serve as a suitable 
optimisation step for a GH herd. The best solution found took 303 steps 
(Listing 1). By comparison, as discussed earlier, the best solution found 
by CGE (a GE variant) requires 337 steps that is currently the most 
effective solution reported in literature. This indicates that the new 
algorithm not only is able to improve the overall speed of grammatical 
evolution, but also provides more effective solutions with a lower 
failure rate.

Conclusions
Seeded Grammatical Evolution (sGE) is a novel automatic 

programming algorithm that builds on the GE paradigm, with the 
adoption of an initial non-random population generated through a 
swarm based method (GH). 

The experimental results show that sGE produces results using less 
total generations than GE (but with the added overhead of the initial GH 
search), and produces more effective code than that produced purely 
through GH with a lower failure rate. Additionally, sGE produced one 
solution that was capable of solving the Santa Fe Trail in 303 steps, 34 
steps fewer than what we believe to be the current state of the art result 
for this benchmark problem.

This study demonstrates that biological processes still provide a 
rich still potentially untapped source from which to provide inspiration 
for new techniques that can either lead to improvements on existing 
algorithms, or provide inspiration for new algorithms that are more 
effective than existing approaches. 
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Settings GH GE
Codon length 8 bits 8 bits
Minimum number of codons 20 15
Maximum number of codons 20 25
Size of herd / population 700 700
Mutation probability N/A 0.01
Crossover probability N/A 0.70
Number of Alphas 10 N/A
Number of Betas 40 N/A

Table 1: Settings used in the experiments.

Seeding ratio
25% 50% 75% 100%

Avg. generations to find a 
solution 342 237 143 156

Avg. generations be-fore solution 
did not improve further 388 312 429 277

Avg. steps used by solutions found 675.0 641.5 405.7 526.5
Steps in best solution found 609 545 303 405
Table 2: Results of the seeding experiments, with GH being used to seed GE on 
the Santa Fe Trail problem.
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Listing 1: Listing of the best solution generated by the hybrid algorithm that is 
capable of solving the Santa Fe Trail in 303 steps.
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