
Volume 6(3): 132-135 (2013) - 132
J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

Research Article Open Access

Headleand and Teahan, J Comput Sci Syst Biol 2013, 6:3
DOI: 10.4172/jcsb.1000110

Research Article Open Access

Keywords: Algorithms; Evolution; Genomea

Introduction
Automatic Programming (AP) solves problems iteratively by

evaluating and further optimising candidate solutions represented as
computer programs. One modern approach to AP are the grammar
based techniques, notably: Grammatical Evolution (GE) [1], which
follows the evolutionary algorithm paradigm; Grammatical Swarm
(GS), a particle swarm optimisation approach [2]; and Grammatical
Herding (GH) which takes inspiration from the herding of mammals
[3]. The grammar-based techniques are an example of bio-inspired
artificial intelligence, with the GE algorithm inspired by the biological
process for generating a protein. In this process, the genome consisting
of DNA (this corresponds to the binary string in GE) is transcribed to
RNA (the grammar in GE) and translated into amino acid sequences
and used in the protein resulting in the phenotype (the output program
in GE).

This family of techniques has been incorrectly compared to Genetic
Programming (GP), but both approaches are fundamentally different
in their methodologies. The main fundamental differences are found
in both their crossover and mutation functions. GP also manipulates
code directly as a tree, whereas the grammar techniques instead
manipulate a binary string that is subsequently mapped via a grammar
to executable code. This mapping process is what sets the grammar
techniques apart as they can be considered language independent,
able to evolve code given (usually) a context free grammar expressed
in BNF. The fundamental differences between these methodologies are
further discussed in detail in [4] and a full exploration of the crossover
operation can be found [5].

However, evolution with these algorithms takes a significant
number of iterations, each of which requires usually hundreds of
unique candidate evaluations to solve a problem. There is a scaling
problem as the number of candidates requiring evaluation increases
substantially with the complexity of the problem due to the increasing
size of the search space. Additionally, there is no guarantee that the
final generated solution will be optimal, or meet a given success criteria
defined by the fitness function, with the search often becoming trapped
in local optima.

This paper discusses the development of a novel grammar-based

hybrid algorithm devised to further improve the efficiency of the
problem solving process. Our new solution, seeded Grammatical
Evolution (sGE), takes the efficiency advantages from a swarm-based
technique (GH) and the optimisation advantages of Grammatical
Evolution with the aim to further enhance the current state of the art.

Background and Motivation
Evolutionary algorithms, whilst being a powerful technique,

take a significant amount of processing time to solve a problem due
to the number of individual candidate evaluations required. Natural
evolution is a slow process of trial and improvement taking millions
of years; its computational equivalent (whilst not taking quite as
long) suffers from the same blind watchmaker method [6] of iterative
improvement. Simply put, the solutions are not designed, but found
through an artificial form of natural selection.

Whilst the physical time taken can be significantly reduced
through parallelism and an increase of processing power, an alternative
approach would be to reduce the total number of generations and the
number of individual evaluations required to achieve the objective.
In a previous study [3], it was noted that Grammatical Herding was
more efficient at generating a solution, but this was at the sacrifice of
optimisation. In certain real world applications, a solution needs to
be generated quickly, but sufficiently optimised to achieve the desired
objective, especially if autonomous agents are to be human competitive.

This understanding from our previous research provided the insight
that led us to the new hybrid algorithm discussed here which uses
Grammatical Herding to seed Grammatical Evolution. The next two
sections identify the principle differences between these two algorithms.

*Corresponding author: William Teahan, School of Computer Science, Bangor
University, Bangor, Wales, UK, E-mail: w.j.teahan@bangor.ac.uk

Received June 04, 2013; Accepted July 17, 2013; Published July 20, 2013

Citation: Headleand C, Teahan WJ (2013) Swarm Based Population Seeding
of Grammatical Evolution. J Comput Sci Syst Biol 6: 132-135. doi:10.4172/
jcsb.1000110

Copyright: © 2013 Headleand C, et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License,which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Abstract
Evolutionary Algorithms, although powerful, are known to be wasteful and time consuming, requiring the

evaluation of a large number of candidates. However the strength of the methodology is their ability to continually
optimise the population hopefully ensuring a near optimal final solution. When applied to automatic programming
tasks, the same limitations are observed, notably the time taken to develop a solution. An alternate, swarm-based
method ‘Grammatical Herding’ suffers from the opposite concerns. Whilst it generates moderate fitness solutions
quickly, these candidates often lack the optimisation of solutions generated via an evolutionary approach. This study
details a hybrid technique ‘Seeded Grammatical Evolution’ where Grammatical Herding (GH) is used to seed the
initial population of a Grammatical Evolution (GE) algorithm, with the result that the final solution is produced faster
than one produced by GE alone and more effective (fitter) than one produced by GH. In this paper, we explore
the background to the study including the initial work that inspired the approach. We also discuss the design of
the algorithm and finally the results. We conclude that the hybrid approach is not only capable of producing a fast
solution but also achieves state of the art results on a standard benchmark problem, the Santa Fe Trail.

Swarm Based Population Seeding of Grammatical Evolution
Chris Headleand and William J Teahan*

School of Computer Science, Bangor University, Bangor, Wales, UK

Journal of
Computer Science & Systems BiologyJo

ur
na

l o
f C

om
pu

ter Science & System
s Biology

ISSN: 0974-7230

Citation: Headleand C, Teahan WJ (2013) Swarm Based Population Seeding of Grammatical Evolution. J Comput Sci Syst Biol 6: 132-135.
doi:10.4172/jcsb.1000110

Volume 6(3): 132-135 (2013) - 133
J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

Grammatical evolution

Grammatical Evolution (GE) is a genetic algorithm based
automatic programming method where candidate solutions are
evolved over repeated generations [1]. The system was designed in part
to avoid some of the complications presented in genetic programming
(an alternate program synthesis method). By manipulating a bit string
before mapping via usually a context free grammar, the candidate
solution can be evolved without the need to directly manipulate code.
The flow diagram for the method is shown in Figure 1.

This method has been further developed with Constituent
Grammatical Evolution [7]. This takes additional bio-inspiration from
the concepts of constituent genes and conditional behaviour switching
producing state-of-the art results on various benchmark problems such
as the Santa Fe Trail problem.

Grammatical herding

We recently described a novel automatic programming algorithm
called Grammatical Herding [3]. The aim of the algorithm is to use
a swarm-based search heuristic for automatic programming in an
arbitrary language. Many swarm systems have demonstrated that
simple rules can produce complex results, such as Boids [8] or Particle
Swarm Optimisation [9]. It is from the latter that Grammatical Herding
takes its initial inspiration. Instead of looking to insects, it bases its rule
set on the movement of mammals.

Utilising the Grammatical Evolution genotype to phenotype
mapping process and inspiration from herd movements, it treats
the possible solution space as an environment and drives candidates
towards areas of the search space known to produce high fitness
solutions. A flow diagram for our algorithm is provided in Figure 2.

In Grammatical Herding, three classes of agents are maintained.
Firstly there is the herd, which contains all agents, equivalent to the
population in standard genetic algorithms. Within the herd, there

are ‘Betas’, a subset of the fittest agents, which are used to direct the
movements of the herd based on their best location and fitness. Within
the Betas, a final subset of agents is maintained known as the ‘Alphas’.
The Alphas are the Betas with the highest fitness. These are used to steer
underperforming agents by setting their current location to the best
location of the Alphas. This has the effect of “herding” weaker members
of the herd towards higher fitness areas within the search space. The
inspiration from this comes directly from observations of herds of
horses in the wild where stallions drive weaker/younger members of
the herd towards the Alpha mares (Figure 3).

The PB-location (Personal Best location) is the multi-dimensional
coordinate within the search space where an agent achieved its highest
fitness. For more details on the design of the algorithm [3].

GH was selected as the swarm algorithm to seed GE in this paper as
it shares the same mapping process. This also allowed us to use the same
system for generating the initial genome string [10-13]. This limited the
risk of additional programmatic bias in the implementation.

Seeded Grammatical Evolution
In this section, we discuss the design and implementation of the

hybrid algorithm. The algorithm has two main stages, the Seeding Stage
where GH is used and the Optimising Stage where GE is used (Figure
4). This section specifically focuses on the seeding process and the
criteria for ‘handover’ before the experimental results.

Design

For this initial study, both algorithms were used unmodified, with
Figure 1: Design of the Grammatical Evolution algorithm.

Figure 2: Design of the Grammatical Herding algorithm.

Citation: Headleand C, Teahan WJ (2013) Swarm Based Population Seeding of Grammatical Evolution. J Comput Sci Syst Biol 6: 132-135.
doi:10.4172/jcsb.1000110

Volume 6(3): 132-135 (2013) - 134
J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

the focus being on using GH to seed the initial population of GE.
However, this required that two key decisions be made, notably:

1.	 At what threshold should the algorithm switch from swarm to
evolutionary computation?

2.	 How should the GE population be seeded, and what ratio of the
GH herd should form the GE population?

These considerations are discussed in detail over the following
sections. For the purpose of this discussion, ‘threshold’ refers to a
value-based criterion for performing handover. Handover is the
process of moving from the seed algorithm (GH) to the optimisation
algorithm (GE).

Fitness threshold

The fitness threshold changeover involved moving from GH to
GE when a specific fitness had been achieved by one of the agents
within the herd. The principle concept behind this method was to
take advantage of the speed that GH was able to traverse the possible
search space. It had been noted in a previous study [3] that GH was
able to achieve a fitness of over 50% within relatively little iteration.
The hope was that, by using this method, the high fitness areas within
the search environment could be identified quickly and passed to GE
for more fine-grained optimisation. For a pilot study, four different
fitness thresholds were trialled (20%, 40%, 60% and 80%) to gauge their
performance. This preliminary investigation indicated that the 40% to
60% fitness threshold experiments produced the best results. Due to
this, a threshold of 50% was set in the main study. It was assumed that
this produced useful results, as although a strong population had been

generated, the swarm had not yet converged (ensuring high genetic
diversity).

Iteration threshold

In addition to the fitness threshold, an iteration threshold was set
for the GH stage. This defined when the changeover occurred after a
fixed number of iterations had been completed. The reasoning behind
this second threshold was as a fallback position if GH was unable
to find a high fitness solution. By placing a limit on the number of
iterations, GE could automatically take over if the GH algorithm was
unsuccessful.

For the purpose of this algorithm, the iteration threshold was set
at 100 iterations.

Seed ratio

A final consideration was how many members of the GH herd
should be selected for breeding. Initially, the thought was to transition
the whole herd into the GE population (a 100% seed ratio). However,
this transition process could also be an opportunity to add some
additional genetic diversity into the initial GE population. With that
thought considered, the main study was comprised of four experiments
(each containing 100 individual runs) each utilising a different seed
ratio. The seed ratios explored in this study were 25%, 50%, 75% and
100% (i.e. full population handover).

Experimental Results
In this section, we discuss the results from our initial study on the

Santa Fe Trail problem. The Santa Fe Trail problem was selected due
to the quality of the background research in this area. As a benchmark
test, the Santa Fe Trail problem has a very clear objective with several
well-documented solutions, allowing us to compare final results with
other AP algorithms such as genetic programming.

Solving the trail involves finding a set of rules that allow an agent
to find food along a predefined path with gaps. The agent is able to
sense one step ahead of itself, turn left and right, and move forward.
The quality of the final solution is ascertained by counting the number
of ‘steps’ taken to complete the trail, the lower the number of steps the
stronger the solution. Currently the best-published solution (according
to our review of the literature) is the one discussed by Georgiou and
Teahan [7] which takes 337 steps. The fitness of each candidate solution
is quantified by the amount of food the agent is able to eat along the
trail with a maximum number of 89 (100% fitness).

Each experiment was conducted using the settings for GH and
GE listed in Table 1. These settings were based on research conducted
by Headleand and Teahan [3] and through some preliminary
benchmarking between GH and GE. Our initial benchmarking led us
to believe that these setting may be optimal for this problem.

The noticeable differences in settings are the maximum and
minimum number of codons as GE utilises a varied length string; GH
by comparison uses a fixed length string. Also, note that GE mutates a
small number of the population; GH, however, sets all Alphas to wander
randomly within the environment. The crossover in GE is fixed at 0.7
in these experiments; in GH, however, the ‘crossover’ depends on the
relative position of the agent’s current personal best (PB) location and
the PB location of the Beta it is moving towards, utilising a weighted
average function described in [3].

Each experimental set consisted of 100 individual runs. Each run
was given a maximum of 500 to find a solution.

Figure 3: Two stallions drive a herd of feral horses forward. Photo taken at a
ranch in North America.

Figure 4: Design of the seeded Grammatical Evolution algorithm.

Citation: Headleand C, Teahan WJ (2013) Swarm Based Population Seeding of Grammatical Evolution. J Comput Sci Syst Biol 6: 132-135.
doi:10.4172/jcsb.1000110

Volume 6(3): 132-135 (2013) - 135
J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

The hybrid algorithm was highly successful at finding a solution,
with only 5 out of 400 unable to find a solution. This is a failure rate of
1.25% for the hybrid algorithm, as opposed to 11% for GH and 13% for
GE, a significant improvement.

Table 2 displays further results from our initial study. The columns
represent the results after four experimental sets of 100 runs using the
various seed ratios as discussed in the previous section. The aim of this
research was to see if a hybrid technique could improve the time taken
by GE to find a solution, and to ascertain if GE could serve as a suitable
optimisation step for a GH herd. The best solution found took 303 steps
(Listing 1). By comparison, as discussed earlier, the best solution found
by CGE (a GE variant) requires 337 steps that is currently the most
effective solution reported in literature. This indicates that the new
algorithm not only is able to improve the overall speed of grammatical
evolution, but also provides more effective solutions with a lower
failure rate.

Conclusions
Seeded Grammatical Evolution (sGE) is a novel automatic

programming algorithm that builds on the GE paradigm, with the
adoption of an initial non-random population generated through a
swarm based method (GH).

The experimental results show that sGE produces results using less
total generations than GE (but with the added overhead of the initial GH
search), and produces more effective code than that produced purely
through GH with a lower failure rate. Additionally, sGE produced one
solution that was capable of solving the Santa Fe Trail in 303 steps, 34
steps fewer than what we believe to be the current state of the art result
for this benchmark problem.

This study demonstrates that biological processes still provide a
rich still potentially untapped source from which to provide inspiration
for new techniques that can either lead to improvements on existing
algorithms, or provide inspiration for new algorithms that are more
effective than existing approaches.
References

1. Ryan C, Collins JJ, O’Neill M (1998) Grammatical evolution: Evolving programs
for an arbitrary language. Lecture Notes in Computer Science 1391: 83-96.

2. O’Neill M, Brabazon A (2006) Grammatical Swarm: The generation of programs
by social programming. Natural Computing 443-462.

3. Headleand C, Teahan WJ (2013) Grammatical Herding. J Comput Sci Syst
Biol 6:043-047.

4. Oltean M, Grosan C (2003) A comparison of several linear genetic programming
techniques. Complex Systems 14: 285-314.

5. O’neill M, Ryan C, Keijzer M, Cattolico M (2003) Crossover in grammatical
evolution. Genetic Programming and Evolvable Machines 4: 67-93.

6. Dawkins R (1986) The blind watchmaker. WW Norton & Company, USA.

7. Georgiou L, Teahan WJ (2011) Constituent grammatical evolution. Proceedings
of the Twenty-Second International Joint Conference on Artificial Intelligence:
1261 - 1268.

8. Reynolds C (1987) Flocks, herds and schools: A distributed behavioral
model. Proceedings of the 14th annual conference on Computer graphics and
interactive techniques. SIGGRAPH: 25-34.

9. Kennedy J, Eberhart R (1995) Particle swarm optimization. Neural Networks,
1995. Proceedings, IEEE International Conference on. IEEE 4: 1942-1948.

10.	Georgiou L, Teahan WJ (2006) jGE - A Java implementation of Grammatical
Evolution. Proceedings of the 10th WSEAS International Conference on
SYSTEMS, Vouliagmeni. Athens: WSEAS: 406-411.

11. Koza JR (1992) Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambrige Massachusetts, UK.

12.	Mistral K (2005) The Secret Life of Stallions. Retrieved 2012, from Horse
Connect.

13.	Utah State University (2009) Wild Horse Behaviour. Retrieved 2012, from
Animal, Dairy and Veterinary Sciences.

Settings GH GE
Codon length 8 bits 8 bits
Minimum number of codons 20 15
Maximum number of codons 20 25
Size of herd / population 700 700
Mutation probability N/A 0.01
Crossover probability N/A 0.70
Number of Alphas 10 N/A
Number of Betas 40 N/A

Table 1: Settings used in the experiments.

Seeding ratio
25% 50% 75% 100%

Avg. generations to find a
solution 342 237 143 156

Avg. generations be-fore solution
did not improve further 388 312 429 277

Avg. steps used by solutions found 675.0 641.5 405.7 526.5
Steps in best solution found 609 545 303 405
Table 2: Results of the seeding experiments, with GH being used to seed GE on
the Santa Fe Trail problem.

ifelse food-ahead

[move]

[turn-left

ifelse food-ahead

 [ifelse food-ahead

[move move

ifelse food-ahead

[move movemove]

[move]

]

[turn-left]

]

[ifelse food-ahead

[move]

[turn-right]

turn-right

ifelse food-ahead

[move movemove]

[turn-left]

 move

]

]

Listing 1: Listing of the best solution generated by the hybrid algorithm that is
capable of solving the Santa Fe Trail in 303 steps.

http://link.springer.com/chapter/10.1007%2FBFb0055930#page-1
http://link.springer.com/chapter/10.1007%2FBFb0055930#page-1
http://link.springer.com/article/10.1007%2Fs11047-006-9007-7
http://link.springer.com/article/10.1007%2Fs11047-006-9007-7
http://www.omicsonline.org/0974-7230/JCSB-06-043.php?aid=11794
http://www.omicsonline.org/0974-7230/JCSB-06-043.php?aid=11794
https://www.complex-systems.com/pdf/14-4-1.pdf
https://www.complex-systems.com/pdf/14-4-1.pdf
http://link.springer.com/article/10.1023/A:1021877127167
http://link.springer.com/article/10.1023/A:1021877127167
http://scilib-biology.narod.ru/Dawkins/Watchmaker/Dawkins_R.-The_Blind_Watchmaker.html
http://wikibin.org/articles/constituent-grammatical-evolution.html
http://wikibin.org/articles/constituent-grammatical-evolution.html
http://wikibin.org/articles/constituent-grammatical-evolution.html
http://dl.acm.org/citation.cfm?id=37406
http://dl.acm.org/citation.cfm?id=37406
http://dl.acm.org/citation.cfm?id=37406
http://www.ru.lv/~peter/zinatne/ebooks/MIT - Genetic Programming.pdf
http://www.ru.lv/~peter/zinatne/ebooks/MIT - Genetic Programming.pdf
http://www.horseconnection.com/site/archive/story-feb06.html
http://www.horseconnection.com/site/archive/story-feb06.html
http://www.advs.usu.edu/files/uploads/ADVS3910WildHorses.pdf
http://www.advs.usu.edu/files/uploads/ADVS3910WildHorses.pdf

	Title
	Corresponding author
	Abstract
	Introduction
	Background and Motivation
	Grammatical evolution
	Grammatical herding
	Seeded Grammatical Evolution
	Design
	Fitness threshold
	Iteration threshold
	Seed ratio

	Experimental Results
	Conclusions
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2
	Listing 1

