Synchronous Primary Endometrial and Ovarian Cancers

Georgios Androutsopoulos* and Georgios Decavalas
Department of Obstetrics and Gynecology, University of Patras, Medical School, Rion 26500, Greece

Synchronous primary cancers are relatively uncommon in general population. About 0.5-1.7% of women with gynecological malignancies have synchronous primary cancers of the female genital tract [1-5]. Synchronous primary endometrial and ovarian cancers are the most common combination [1,2,4].

The etiology and pathogenesis of synchronous primary cancers of the female genital tract, remains unclear [4,6]. The theory of the “secondary Müllerian system” has been proposed to explain the observation of multiple similar cancers in the female genital tract [6,7]. According to this theory, epithelia of the cervix, uterus, fallopian tubes, ovaries and peritoneal surfaces simultaneously respond to a carcinogenic stimulus [6,7]. Shared hormonal receptors (estrogen receptors) may be responsible for the development of multiple primary malignancies in predisposed tissue [3,4,8].

It is also possible that synchronous presence of these cancers is an indicator of an etiologically distinct condition [9]. Perhaps patients have a more fragile genome and prior genetic damage may predispose to synchronous cancers [9-13]. Thus, embryologic, hormonal or other phenomena may be associated with the development of malignancies arising simultaneously in genital tissues [3,4,6-9,11].

Patients with synchronous primary endometrial and ovarian cancers had distinct clinical characteristics including: young age, obesity, premenopausal status and nulliparity [14]. Usually, they are 10-20 years younger than their counterparts with endometrial or ovarian cancer [2,15-17]. The median age at diagnosis is 50 years [1,14,16-19].

The most common presenting symptoms and signs are: abnormal uterine bleeding (46%), abdominal/pelvic pain (17%) and abdominal/pelvic mass (13%) [14,16,19,20].

Synchronous primary endometrial and ovarian cancers may have a similar appearance or may be of different histologic types [4,15,18]. The distinction between metastatic and synchronous primary cancers is relatively easy, when they have different histologic types [21,22]. However, the distinction is relatively difficult when they share the same histologic features [21,22]. For that purpose in clinical practise we use well described empirical criteria [21,22].

For most patients with synchronous primary endometrial and ovarian cancers, systematic surgical staging is the baseline therapy [2,4,16-19,23-25]. Systematic surgical staging includes: total abdominal hysterectomy with bilateral salpingo-oophorectomy, total omentectomy, appendectomy, pelvic and para-aortic lymphadenectomy and complete resection of all disease [2,4,16-18,23-25]. Moreover, systematic surgical staging allows a more clear decision for stage related postoperative adjuvant therapy [24,25].

Especially in advanced stage patients, required a more aggressive management with postoperative adjuvant chemotherapy and/or radiotherapy [4,8,16,17,19,20,23,25,26]. The most active chemotherapeutic agents are: taxanes, anthracyclines and platinum compounds [16,19].

Prognostic factors for synchronous primary endometrial and ovarian cancers are: age, stage of ovarian cancer, grade of endometrial cancer and adjuvant therapy [27]. Patients with synchronous primary endometrial and ovarian cancers endometrioid type have a better overall survival than patients with non-endometrioid or mixed histologic subtypes [14]. Also, patients with synchronous primary endometrial and ovarian cancers have overall 5-year survival 85.9% and 10 year survival 80.3% [18].

The reason for better overall survival of patients with synchronous primary endometrial and ovarian cancers is not intuitively obvious [18]. Usually endometrial cancer produces early symptoms, so synchronous ovarian cancer may be detected at an earlier stage [4,10-13,20,23]. Moreover, favorable prognosis may be related with the detection of patients at early stage and low grade disease with an indolent growth rate [1,4,10-12-20-23].

References


*Corresponding author: Georgios Androutsopoulos, Lecturer, Department of Obstetrics and Gynecology, University of Patras, Medical School, Rion 26500, Greece, Tel: +306974088092; E-mail: androutsopoulos@upatras.gr

Received November 18, 2013; Accepted November 20, 2013; Published November 22, 2013


Copyright © 2013 Androutsopoulos G, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Submit your next manuscript and get advantages of OMICS

Group submissions

Unique features:

• User friendly/feasible website-translation of your paper to 50 world’s leading languages
• Audio Version of published paper
• Digital articles to share and explore

Special features:

• 300 Open Access Journals
• 25,000 editorial team
• 21 days rapid review process
• Quality and quick editorial, review and publication processing
• Indexing on PubMed (partial), Scopus, EBSCO, Index Copernicus and Google Scholar etc
• Sharing Option: Social Networking Enabled
• Authors, Reviewers and Editors rewarded with online Scientific Credits
• Better discount for your subsequent articles

Submit your manuscript at: http://www.omicsonline.org/submission/