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Crowding conditions created by macromolecules (proteins, nucleic 
acids, polysaccharides) affect all the biochemical reactions in the cell 
including the processes of folding and misfolding of the proteins. 
Interaction of non-native forms of proteins leading to the formation 
of amorphous aggregates or amyloid fibrils is potentiated by crowding. 
There is a large body of data demonstrating stimulating action of 
crowding on protein aggregation in model systems [1-16].

One of the components of the protein quality control system is 
the family of small heat shock proteins (sHsps). The main function of 
sHsps is the suppression of aggregation of non-native forms of proteins. 
Oligomers of sHsps are composed from subunits with molecular mass 
of 12-43 kDa. sHsps are not capable of assisting the folding of newly 
synthesized and stress-denatured polypeptide chains, however they 
form complexes with non-native forms of proteins and transfer the 
latter to ATP-dependent chaperones providing protein folding or to 
proteasomes where proteolytic degradation of unfolded proteins occurs. 
One of the representatives of the family of sHsps is α-crystallin which 
reveals protective (anti-aggregation) action in eye lens. sHsp oligomers 
have dynamic quaternary structure. There are numerous experimental 
data demonstrating high rate of subunit exchange between oligomers 
formed by sHsp [17-24]. 

The anti-aggregation activity of sHsps has been thoroughly studied 
in model systems. However the problem of action of sHsps under 
crowding conditions has not received enough attention. When studying 
the effect of dextran with molecular mass of 68800 Da on dithiothreitol-
induced aggregation of ovotransferrin at various temperatures, Carver 
and co-workers [25] showed that α-crystallin and A-crystallin were 
poorer chaperones under crowding conditions. Kinetics of protein 
aggregation was followed by measurement of the light scattering 
intensity at 360 nm.

The analogous result was obtained in our research into the action of 
α-crystallin on aggregation of UV-irradiated glycogen phosphorylase 
(Phb) in the presence of the following crowding agents: polyethylene 
glycol (PEG) with molecular mass of 20000 Da and trimethylamine 
N-oxide [9]. The increase in the concentration of the crowing agent
results in the disappearance of the protective ability of α-crystallin. 
Chebotareva et al. [16] studied the effect of crowding agents (PEG 
and Ficoll-70) on the chaperone-like activity of α-crystallin with a 
test-system based on thermal aggregation of apo-Phb. It was also 
demonstrated that the anti-aggregation activity of α-crystallin was 
decreased in the presence of crowders. To register aggregation of 
UV-irradiated Phb or apo-Phb, the increment of the light scattering 
intensity at 632.8 nm was measured.

The fact that the protective action of α-crystallin disappears 
under crowding conditions was surprising because it became unclear 
how sHsps could realize their protective function in the crowded cell 
environment.

To elucidate the peculiarities of functioning of sHsps under 
conditions imitating the cell crowded medium, the interaction of 
α-crystallin with the target protein (UV-irradiated Phb) was studied 
using analytical ultracentrifugation and size-exclusive chromatography 

[9]. The α-crystallin–target protein complexes resistant to aggregation 
under crowding conditions have been detected. These complexes are 
formed by the target protein and dissociated species of α-crystallin. The 
idea of forming a complex between dissociated forms of α-crystallin 
and a target protein followed by the assembly of these complexes 
into high-molecular-weight species was developed by Carver and 
co-workers [26]. When using Phb and glyceraldehyde 3-phosphate 
dehydrogenase as target proteins, we demonstrated the formation 
of complexes between the target substrate and dissociated forms of 
α-crystallin at elevated temperatures (48 and 45°C, respectively) [28-
30]. It should be noted that according to the current view dissociation 
of sHsps is required for recognition and binding of structurally unstable 
proteins [31-37].

Using UV-irradiated Phb as a target protein we proposed the 
mechanism of functioning of α-crystallin under crowding conditions 
[9]. This mechanism is represented in figure 1. First of all, this 
scheme demonstrates that crowding stimulates aggregation of a target 
protein. Interaction of α-crystallin with a target protein results in the 
formation of the primary complex I and by this means prevents the 
target protein aggregation. The complexation process is rather fast. 
However, the primary complex undergoes a time-dependent structural 
rearrangement resulting in the formation of complexes II and III 
greatly differing in ability to aggregation. Complex II is formed by the 
dissociated species of α-crystallin and a target protein. It is significant 
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Figure 1: The scheme illustrating aggregation of a target protein in the 
presence of α-crystallin. Complex I is a primary complex. Complex II is a 
complex formed by the dissociated forms of α-crystallin and a target protein; 
this complex is relatively resistant to aggregation under crowding conditions. 
Complex III is a high-molecular-weight complex prone to aggregation.
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that this complex is relatively resistant to aggregation under crowding 
conditions. On the contrary complex III is a high-molecular-weight 
complex that readily aggregate in a crowded medium. 

The fact that complex III is prone to aggregation under crowding 
conditions explains the paradoxical disappearance of the chaperone-like 
activity of α-crystallin registered by the measurement of the increase 
in the light scattering intensity. The disappearance of the chaperone-
like activity in crowded solutions may be simply explained by the 
acceleration of aggregation of complex III. Aggregation of this complex 
masks the formation of complex II that provides the protection against 
aggregation of a target protein under crowding conditions. Thus, using 
analytical ultracentrifugation and size-exclusive chromatography 
allowed us to elucidate how sHsps can fulfill their protective function in 
the cell crowded medium. High mobility of the quaternary structures of 
sHsps provides the possibility of the formation of complexes involving 
a target protein and dissociated forms of sHsp. These complexes remain 
in a non-aggregated form under crowding conditions. 

The structural rearrangement of the primary complexes (complexes 
I) deserves special attention. To obtain the time characteristics of 
complex I reorganization, the following approach may be used. 
Aggregation of a target protein is being registered in the presence of 
α-crystallin (or other sHsp). We select the interval of time where an 
initial increment of the light scattering intensity is not yet observed and 
add a crowding agent at definite time intervals. Analysis of the initial rate 
of aggregation of a target protein as a function of time corresponding 
to the moment of addition of a crowding agent allows estimating the 
time of half-conversion (t1/2) for the structural rearrangement of the 
primary complexes. Using such an approach, we determined, for 
example, the t1/2 value for the structural rearrangement of the primary 
complexes formed by UV-irradiated Phb and α-crystallin at 37 °C (t1/2 
= 6.2 min; N.A.Chebotareva, B.I.Kurganov, unpublished data). PEG 
with a molecular mass of 20 kDa was used as a crowding agent in these 
experiments.

In conclusion it should be stressed that the crowded environments 
inside cells play a critical role in the development of protein-
aggregation related diseases and investigation of factors controlling 
protein aggregation is of great importance for the development of 
corresponding treatment modes [38,39].
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