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Abstract
Peritoneal fibrosis (PF) is a common morphological change in peritoneal dialysis (PD) patients. With the 

progression of PF, peritoneal membrane function is impaired, which leads to ultrafiltration failure. Furthermore, PF is 
an essential precursor condition for the development of encapsulating peritoneal sclerosis (EPS), which is the most 
serious complication of PD. Epithelial-mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs) plays a 
crucial role in PF. Transforming growth factor-β1 (TGF-β1) was thought to be the main regulator of EMT in PMCs. High 
glucose, hypertonicity, low pH, glucose degradation products and advanced glycation end-products in PD solution 
were suggested to induce TGF-β1 production. In addition, chronic inflammation mediated by infiltration of immune 
cells and peritoneal angiogenesis also play pivotal roles for the progression of PF.
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Introduction
Peritoneal dialysis (PD) is a useful renal replacement therapy 

for end-stage renal disease (ESRD). However, long-term PD leads to 
peritoneal damage and subsequently to peritoneal fibrosis (PF) [1-3]. PF 
is associated with ultrafiltration failure, which leads to discontinuation 
of the PD by the patient [1-3]. Furthermore, PF is a major risk factor 
for the development of encapsulating peritoneal sclerosis (EPS), which 
is the most serious complication of PD and considered to be one of the 
reasons why PD is avoided in ESRD patients [4,5]. The mechanisms of 
the initiation and progression of PF have been increasingly understood 
through numerous studies involving basic and clinical research.

The mechanism of PF

Mechanisms such as epithelial-to-mesenchymal transition 
(EMT) of peritoneal mesothelial cells (PMCs), chronic inflammation 
and vascularization are thought to be involved in the initiation and 
progression of PF (Figure 1).

EMT of PMCs

EMT is a biological process in which an epithelial cell that interacts 
with basement membrane is altered into a cell with a mesenchymal 
phenotype that has enhanced migratory capacity, invasiveness and 
increased production of extracellular matrix [6]. PMCs express 
epithelial markers such as E-cadherin, cytokeratin and intercellular 
adhesion molecule 1 (ICAM-1). During the process of EMT, these 
epithelial markers are downregulated and mesenchymal markers such 
as α-smooth muscle actin, vimentin and fibronectin are upregulated, 
leading to a change into mesenchymal-like PMCs [7-11]. The 
expression of type I collagen and the migratory capacity are enhanced 
in these transformed PMCs [9,12]. Several clinical studies reported 
that peritoneal tissue samples obtained from PD patients showed 
the existence of elongated fibroblast-like cells expressing epithelial 
markers such as cytokeratin and ICAM-1 in the fibrotic tissue of the 
submesothelial compact zone [9,13]. These results suggested that 
PMCs changed their phenotype to mesenchymal-like cells via EMT and 
migrated to the submesothelial zone. Transforming growth factor-β1 
(TGF-β1) plays a central role in EMT of PMCs [9,14-16 ]. When TGF-β1 
binds to its receptors, the signal is transmitted through Smad and non-
Smad pathways and then upregulates transcription factor Snail, which 
is a key regulator of EMT, resulting in the phenotypic changes of PMCs 
[11,17-19]. 

Chronic inflammation

Among inflammatory cells, macrophages are the most abundant in 

PD effluents and are considered to play a central role in intraperitoneal 
chronic inflammation [20,21]. Macrophage infiltration was observed 
histologically in association with PF [22]. The concentrations of tumor 
necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6, which behaved 
as proinflammatory cytokines mainly produced by macrophages, were 
reported to be elevated in PD effluent in PF [23-27]. These cytokines can 
promote fibroblast proliferation and type I collagen synthesis [28,29]. 
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Figure 1: The mechanisms of peritoneal fibrosis. When stimulated by 
various factors, peritoneal mesothelial cells (PMCs) and macrophages produce 
various proinflammatory cytokines and growth factors. These products induce 
epithelial-mesenchymal transition (EMT) in PMCs, chronic inflammation in 
the peritoneal cavity and angiogenesis. These processes promote fibroblast 
proliferation and collagen synthesis, which lead to the progression of peritoneal 
fibrosis (PF). GDPs: glucose degradation products, AGEs: advanced glycation 
end-products, TNF-α: tumor necrosis factor-alpha, IL: interleukin, TGF-β1: 
transforming growth factor-beta1, VEGF: vascular endothelial growth factor, 
MMP-2: matrix metallopeptidase 2, PMCs: peritoneal mesothelial cells, EMT: 
epithelial-mesenchymal transition. 
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Infiltrated macrophages also contribute to TGF-β1 production on 
peritoneum in PD [30]. Recently, it was reported that the concentration 
of CC chemokine ligand 18 (CCL18) which was secreted mainly by 
macrophages in the spent dialysate was high in the PD patients with 
decreased peritoneal membrane functions, and in those who later 
developed EPS [31,32]. These results suggested that CCL18 may be 
directly related to development of PF and EPS. These line of results 
suggested that chronic inflammation mainly induced by macrophages 
contributed to the development of PF. A recent study showed that PF 
was attenuated, at least in part, through the recruitment of regulatory 
T cells and the augmentation of an anti-inflammatory cytokine, IL-10 
[33]. These results suggested that there are certain roles of lymphocytes 
other than macrophages on PF. Further studies will be needed to 
elucidate the role of immune cells for PF.

Peritoneal angiogenesis

Peritoneal vascular density in PD patients has been reported 
to be increased in association with increased severity of PF [34]. 
Submesothelial angiogenesis in a large vascular surface area resulted in 
elevation of small solute transport, enhancement of glucose absorption 
and dissipation of the glucose-driven osmotic pressure leading to the 
reduction of water removal [1,3]. Vascular endothelial growth factor 
(VEGF) acts as a key regulator of angiogenesis, vascular permeability 
and endothelial cell survival [35]. VEGF was reported to be upregulated 
by local hypoxia and also possibly by inflammation [36,37]. Local 
production of VEGF in PMCs was reported to play a central role in 
peritoneal angiogenesis during PD [38]. Several studies showed that 
the inhibition of peritoneal angiogenesis by anti-VEGF neutralizing 
antibody prevented the progression of PF [39-42]. These lines of 
evidence suggested that angiogenesis promoted the development of PF. 

Fibrogenic factors

Several fibrogenic factors were reported to contribute to the 
development of PF in PD.

Glucose degradation products (GDPs) 

As a dialysate-side factor, high glucose content is an important 
fibrogenic factor of the peritoneum on PD. High glucose induces 
the production of TGF-β1 [7]. Furthermore, glucose degradation 
products (GDPs) such as methylglyoxal, glyoxal, formaldehyde and 
3-deoxyglucosone (3-DG) from glucose are thought to be factors 
that strongly induce PF. The glucose is degraded to GDPs during 
heat sterilization and storage. GDPs have been reported to inhibit 
proliferation and induce EMT on PMCs via upregulation of TGF-β1 
signaling [11,43]. GDPs also promote cytokine release and superoxide 
radical generation of macrophages and blood polymorphonuclear cells 
leading to peritoneal injury. Intraperitoneal administration of dialysate 
including GDP leads to PF in animal models [11]. Furthermore, GDPs 
are precursors of advanced glycation end-products (AGEs), which are 
important inducers of PF as described below [44]. 

Advanced glycation end-products (AGEs)

AGEs are formed by non-enzymatic glycation between reducing 
sugars and proteins, lipids and nucleic acids [45]. AGEs are considered 
to take part in the remodeling and fibrosis of the peritoneum when 
they interact with their receptors. The receptor of AGE (RAGE) was 
expressed by PMCs in the submesothelial layer. The accumulation 
of AGEs is recognized in peritoneal mesothelial and submesothelial 

layers in PD patients, especially with low ultrafiltration [7,46,47]. In PD 
patients, since highly concentrated glucose solution is infused into the 
peritoneal cavity in the long term, the formation of AGEs from GDPs 
in the peritoneum could be accelerated [48,49]. In subnephrectomized 
rats, AGEs accumulation was observed in fibrotic peritoneum along 
with the expression of TGF-β1, and the administration of anti-RAGE 
antibody was found to prevent PF as well as the upregulation of 
TGF-β1 [50]. Furthermore, PF was not promoted by the exposure to 
GDP-containing PD fluid in RAGE-deficient mice [51]. These lines of 
evidence suggested that PF was dependent, at least in part, on AGEs–
RAGE interaction.  

Hypertonicity of dialysate

Hypertonicity of dialysate is also considered to be a factor that 
induces PF. Osmotic agents such as glucose, mannitol and glycerol 
inhibit the growth and stimulate the secretion of lactate dehydrogenase, 
which reflects cytotoxicity and TGF-β1 production to induce EMT in 
PMCs [7]. Low-pH dialysis solution also induced PMC damage [52]. 
Intraperitoneal injection of acidic dialysate induced PF in animal 
models [53]. It was reported that neutral pH and low-GDP dialysate 
was less inductive of the progression of PF than conventional dialysate 
in an animal model [54]. Several clinical studies showed that neutral 
PD solution with low GDP is superior to conventional solution in 
terms of biocompatibility and survival in PD patients [44,55,56]. 

Other fibrogenic factors

As a patient-side factor, long-term PD treatment is the most 
representative risk factor for PF. Peritoneal thickness has been reported 
to increase depending on the duration of PD [46]. Repeated exposure 
to dialysis fluid with the factors mentioned below might be one of the 
main causes of PF. The complication of diabetes mellitus is liable to 
promote PF progression [46]. The mechanism for this may be related 
mainly to the accumulation of AGEs in diabetic patients. Some clinical 
studies have revealed that low residual renal function is also associated 
with high risk of EPS, suggesting that uremia has some influence on 
the progression of PF [2,46]. Not only long-term PD patients but 
also predialysis uremic patients show increased peritoneal thickness 
[46]. The accumulation of AGEs is considered to promote peritoneal 
thickening with fibrosis in a uremic condition [46].

Potential strategy for the prevention and treatment of PF

Since TGF-β1 plays a central role in the pathogenesis of PF, it can 
be a good target for the prevention and treatment of PF. Blockade of 
TGF-β1 signaling using anti-TGF-β1 neutralizing antibody inhibited 
EMT-like changes in cultured PMCs [7]. Smad7 is a molecule that 
inhibits TGF-β1 signaling. Smad7 gene transfer to the peritoneum 
attenuated PF induced by high-glucose-containing dialysis fluid in an 
animal model [57]. Similarly, it was reported that the administration of 
TGF-β1-blocking peptide attenuated the PF in an animal model [58]. 
These lines of evidence suggested that the therapy that targets TGF-β1 
signaling may be a powerful option in the treatment of PF. Several 
studies reported therapies targeting the AGEs and RAGE for the 
treatment of PF. An anti-AGEs reagent, benfotiamine, suppressed the 
progression of PF partly through the reduction of AGEs accumulation 
[59]. The administration of anti-RAGE antibody suppressed TGF-β1 
production in the peritoneum and attenuated PF [50]. These lines of 
evidence suggested that therapy that targets AGEs and RAGE may be a 
powerful option in the treatment of PF.
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