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Introduction
Prostate cancer (PCa) is one of the most common forms of cancer 

in men in the western countries [1]. As the growth of primary prostate 
cancer cells rely on circulating androgens, androgen deprivation 
therapy (ADT) in the form of medical or surgical castration has been 
used as the standard therapy for the treatment of localized and advanced 
PCa [2]. Although ADT leads to an initial regression of the tumor, 
in most of the cases PCa recurs as an aggressive form and becomes 
independent of androgen and this type of PCa is termed as castration-
resistant prostate cancer (CRPC) [3]. The metastatic CRPC is lethal and 
the overall survival is low [4]. Because CRPC exhibits heterogeneity 
and complexity, which may lead to the treatment resistance for some 
CRPC patients, it is therefore an urgent need to define multiple cellular 
pathways that may cooperatively promote progression of CRPC and 
render the tumors insensitive to therapy. Further, it is also important 
to develop novel therapeutic strategies for the effective treatment of 
CRPC. In this review we will discuss some of the recent findings and 
clinical interventions with specific focus on PKA pathways and its 
functional interplay with AR to promote recurrence and treatment 
resistance of PCa. 

AR signaling pathways in the development of CRPC

Despite extensive research in the past decades, the molecular 
mechanism underlying the progression of CRPC is still poorly 
understood. It is widely accepted that androgen receptor (AR) plays 
a central role in the development of CRPC, despite the depleted or 

low levels of circulating androgen, CRPC still expresses AR and AR 
responsive prostate specific antigen (PSA) [5]. Further, most of the 
CRPCs displayed elevated level of AR [6], thus AR is likely to be 
responsible for sensitizing PCa to low level of androgen and promote 
recurrence of CRPC. In addition, in the absence of androgen, alternative 
growth stimulations may replace the effect of androgen to promote 
tumor growth. It has been shown that growth factors such as epidermal 
growth factor (EGF), interleukin-6 (IL-6) and the neuropeptide  
including bombesin and gastrin releasing peptides can activate AR in 
the absence of androgen in prostate cancer cell lines [7-9]. Moreover, 
accumulating evidence also suggests that multiple cellular mechanisms 
such as deregulation of the phosphatidylinositol 3-kinase (PI3-K)-Akt 
pathway, overexpression of the anti-apoptotic B-cell lymphoma 2 (Bcl-
2) gene  as well as neuroendocrine differentiation  may contribute to
the progression to CRPC [10-12]. Because AR is a ligand dependent
nuclear transcription factor that mediates the action of testosterone
and dihydrotestosterone (DHT), the altered intracellular localization
may affect the compositions of AR associated networks and render
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Abstract
Androgen deprivation therapy (ADT) in the form of medical or surgical castration has been used as the standard 

therapy for localized and advanced prostate cancer (PCa). Although ADT leads to the initial regression of tumors, 
the recurrence of more aggressive PCa, also termed as castration-resistant PCa (CRPC) is inevitable. Androgen 
receptor (AR) and its associated network have been proposed to play central role in the progression of CRPC. 
Given that CRPC exhibits the nature of heterogeneity and complexity, multiple cellular pathways may cooperatively 
promote progression of CRPC and render the tumors insensitive to therapy. In this article, we will review some 
of the recent findings and clinical interventions to identify the novel targets and alternative signaling pathways 
associated with AR that may allow the aggressive forms of PCa to recur and become resistance to therapy. We will 
discuss about the role of the cyclic adenosine monophosphate (cAMP) activated protein kinase A (PKA) pathway 
in the progression of CRPC. The emerging evidence suggests that several key factors in PKA signalings may play 
important roles in the recurrence and treatment response of CRPC, and that PKA pathways may serve as potential 
diagnostic and predictive biomarkers for CRPC. We will also update with the information on the novel therapeutic 
strategies that have been designed and tested in laboratories to inhibit PCa growth by targeting both AR and 
PKA pathways. Understanding of the molecular mechanisms underlying the progression of CRPC and treatment 
resistance will provide novel insight for effective treatment of CRPC.
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the cells hypersensitive to low androgen. It has been shown that AR 
remains inactive in the cytoplasm when bound to the heat shock 
proteins (HSP) such as HSP90, HSP70 and Hsp56. Binding of the 
hormone (testosterone and DHT) leads to conformational changes 
of the AR, releasing AR from the HSP-AR complexes and affects the 
subcellular translocation of AR [9]. Thus, the alterations or disruption 
of the multiple pathways that are associated with AR nuclear transport 
may also contribute to the progression of CRPC. 

The molecular composition of the PKA signaling pathways

Cyclic adenosine monophosphate (cAMP) activated protein kinase 
A (PKA) pathway has been implicated in the progression to CRPC [13]. 
It has been shown that PKA pathway was involved in the progression of 
PCa through activation of protein kinase B (PKB) and through expression 
of Bcl-2 as well as via induction of neuroendocrine differentiation. PKA 
is a serine/threonine kinase that reversibly phosphorylates numerous 
proteins in the cytoplasm and in the nuclear compartment and it is 
dependent on cAMP for its activity [14]. The cAMP is the classical 
second messenger discovered in 1958 and has been shown to play a 
role in metabolism, cellular growth, differentiation, gene expression 
and apoptosis [14]. Intracellular  cAMP is produced by the enzyme 
adenylyl cyclase (AC) and is dependent on hormonal stimulation via 
the stimulatory G protein coupled receptor [14]. The PKA exists as a 
tetrameric holoenzyme consisting two regulatory (R) and two catalytic 
(C) subunits forming a holoenzyme R2C2 [15]. As a result of either 
homo- or heterodimerization of different R subunits, a diversity of 
PKA isozymes including PKAI (R1α2C2, R1β2C2) and PKAII (R2α2C2, 
R2β2C2) are formed [14,15]. The R subunits are the major intracellular 
receptors of cAMP. Binding of the cAMP by the R subunits leads to the 
release of C subunits from the R-C complexes, and allow the C subunits 
to phoshorylate downstream substrates [15]. The C subunits Cα, Cβ, 
and Cγ are coded by the genes PRKACA, PRKACB and PRKACG 
respectively [14,15]. PKA pathways control the intracellular calcium, 
cell proliferation, inflammation and transcription [16]. PKA exerts the 
effects of cAMP on several key transcriptional factors, among them the 
cAMP response element (CRE)-binding protein 1 (CREB/CREB1) is 
the principle mediator. Phosphorylation of  CREB by PKA at serine 133 
is required for the activation of CREB1  [17]. Phosphorylated CREB 
(pCREB) can modulate the expression of a large number of genes that 
are involved in cell growth and survival [18,19]. The family of cyclic 
nucleotide phosphodiesterase isozymes (PDEs) regulates intracellular 
levels of cAMP and cGMP. There is a reciprocal regulation between 
PDEs and PKA pathways. The cAMP specific PDEs including PDE4, 
PDE7 and PDE8 family of proteins play important roles in controlling 
the activity of the PKA pathway [20]. PKA in turn mediates the 
activities of the PDEs. PDE4 family of proteins is mainly expressed in 
inflammatory cells, brain, endothelial cells and cardiovascular tissues. 
PDE4 activity is mediated by PKA through phosphorylation. Upon 
the hormonal stimulation, the increased level of cAMP will lead to the 
increased activity of PDE4 [21]. This suggests that PKA phosphorylation 
may bridge the link between cAMP and PDE4. Multiple isoforms of 
the PDE4 family namely the PDE4A, PDE4B, PDE4C and PDE4D 
have been shown to play important role in cell growth and survival. 
Recruitment of PDE4 during T cell activation is an important event 
to enhance the T-cell immune response [22]. PDE4, 7 and 8 are 
critical components of cAMP-dependent PKA signaling. However, the 
expression patterns and role of PDEs in pathogenesis PCa remains to 
be investigated. Another family of PKA associated proteins, termed as 

the A-Kinase anchoring proteins (AKAPs) can bind to the regulatory 
subunits of PKA and this interaction is thought to be responsible 
for the subcellular localization of PKA. The AKAPs also aids to the 
termination of PKA signaling by bringing PDE isozymes to degrade 
cAMP [23,24].   

The cAMP has long been described as a key regulator in cell 
growth and differentiation. Its role in controlling tumor growth was 
demonstrated in a series of studies where the cAMP analogos were 
able to inhibit tumor growth and induce differentiation in various 
types of tumors [25,26]. Site selective cAMP analog designated as 8-CI-
cAMP has potent inhibitory effect on breast cancer and colon cancer 
cell lines [27]. Because 8-CI-cAMP facilitates its effect on cell growth 
and differentiation via PKA type I and type II isozymes (PKAI and 
PKAII) that are the result of the interactions between R subunits and 
C subunits, the potential role of PKA pathways in tumorigenesis has 
been considered [28]. Due to that cAMP acts as positive and negative 
intracellular regulators depending on the physiological conditions, 
hormonal status and cell types [28], the cAMP-dependent PKAI and 
PKAII also have dual function of either inhibiting  or promoting cell 
growth and differentiation. Not until a decade ago, the distinct function 
of PKAI and PKAII in controlling cell proliferation was defined. 

In normal cells, while PKAI is transiently expressed at high levels in 
response to physiological or hormonal stimuli, PKA-II is preferentially 
expressed in differentiated tissues. In cancer cells, PKAI is constitutively 
overexpressed and is associated with poor prognosis in various types of 
human cancers [29,30]. This suggests that there is a balance between 
the expression levels and activities of PKAI and PKAII in normal 
tissues, and this balance is disrupted during tumorigenesis. Therefore 
8-CI-cAMP may restore the balance of cell growth from malignancies 
by suppression of PKAI and induction of PKAII.  Expression of PKAI 
and PKAII has been observed in normal prostate tissues. The activity 
and expression level of PKAI is dependent on the level of hormones, 
as PKAI activity decreases by 50% in ventral prostate three  days post-
castration, whereas PKAII level shows little changes [28,31]. This 
suggests that there is a functional link between the PKAI protein levels 
and hormone production. 

PKA pathways in the development of CRPC

The expression of several PKA subunits have been examined in 
several prostate cancer cell lines [25,32] and in PCa specimens [30] from 
several patient cohorts. Overexpression of PKARIα subunit  resulted 
in the induction and up-regulation of global expression of  genes that 
are required for proliferation and tumor progression in the aggressive 
PC3M cells [32]. Conversely, proto-oncogens and genes for tyrosine 
and serine/threonine kinases that are overexpressed in tumors were 
specifically downregulated following the treatment with antisense to 
PKARIα [33,34]. PKARIα subunit overexpression showed prognostic 
values to predict outcome in prostate cancer patients treated with 
radiotherapy (RT) with or without short-term androgen deprivation 
therapy. In a patient cohort consisting of 313 cases in the RTOG 92-
02 study, overexpression of PKARIα subunit was shown to correlate 
with increased risk of failure after combination treatment with ADT 
and RT. Overexpression of PKARIα was also associated with distance 
metastasis. This suggests that the length of AD to patient outcome is 
affected by PKARIα overexpression [30,35]. The more recent studies 
have demonstrated that combined knockdown of AR and inhibition of 
PKARIα enhanced growth arrest of prostate cancer cells [36]. Further, 
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inhibition of PKARIα via antisense molecules also inhibited growth of 
PCas in cell lines and in xenograft mice, suggesting an important role 
for PKARIα in promoting the growth of PCa [37,38]. 

The role of PDEs in the progression of PCa was studied in PCa cell 
lines including PC3, DU145 and LNCaP cells. Treatment of LNCaP 
cells with the non-selective phosphodiesterase inhibitor, papaverine 
inhibited proliferation and invasive potential and induced terminal 
differentiation in LNCaP cells, which is correlated with an intracellular 
cyclic AMP-mediated pathway [39]. Expression of cAMP specific 
phosphodiesterases such as PDE4B and PDE4D are functionally linked 
to PKA and AR as well. Overexpression of PDE4D was shown to  result 
in a significant reduction of androgen mediated activation of AR in 
LNCaP cells [40]. And more recently, PDE4B was found to be down-
regulated in advanced prostate cancer and targeted knockdown of 
PDE4B promoted androgen independent growth in LNCaP cells [41].

Expression of genes encoding PKA-related A kinase anchoring 
proteins AKAP3 and AKAP4 was observed in PCa tumor tissues but 
was not detected in normal prostate tissues [42]. Recently AKAP4 
was shown to be higly expressed at the protein level in tumors from 
PCa patients [43]. Overexpression of CREB1, the transcriptional 
factor associated with PKA pathways are the common events in 
various types of cancer including PCa, breast cancer, non-small-
cell lung cancer and acute leukemia [44]. The transcription factor 
CREB has also been implicated in PCa metastasis, as bone metastatic 
tissues displayed positive positive staining for phosphorylated CREB 
(pCREB), while their normal counterpart had no detectable pCREB 
activity [45]. Further evidence also suggested that CREB may promote 
bone metastasis of PCa by modulating the expression of multiple genes 
required for angiogenesis including VEGF and HIF-1 [45]. The elevated 
level of PKIB (cAMP-dependent protein kinase inhibitor-beta), was 
observed specifically in CRPCs and in aggressive PCas. There was a 
direct interaction between PKIB and PKA subunit C, as knockdown of 
PKIB in PCa cells altered the subcellular localization of PKA C subunit. 
PKIB enhanced phosphorylation of Akt at Ser473 by mediating the 
activity of PKA-C kinase. These findings suggest that PKIB and PKA 
subunit C may play an important role in the progression of PCa by 
mediate PI3/Akt pathways [46].

Modulation of AR action via PKA

It has been shown that PKA controls AR function partly through its 
ability to modulate the subcellular localization of AR [47]. Inhibition 
of PKA by H89 (selective inhibitor of PKA) led to the cytoplasmic 
sequestration AR in the presence of R1881 (a synthetic androgen) in 
LNCaP cells. It is suggested that PKA may modulate nuclear entry 
of AR by phosphorylating the HSP90. The HSP90 is responsible for 
retaining the AR in the cytoplasm, PKA mediated phosphorylation of 
HSP90 relieves AR from its grip and aids in nuclear translocation [48]. 
However, the role of nuclear entry of AR that is controlled by PKA 
pathways in the progression of CRPC remained to be investigated. 

In androgen-independent PC-3 cells, induction of AR expression 
in combination with stimulation of PKA pathways by forskolin 
(an enhancer of cAMP) led to the activation of AR in an androgen-
independent fashion [13,49]. Moreover, Sadar et al. [50] have shown 
that forskolin stimulation led to the induction of androgen responsive 
PSA gene and other ARE driven reporter constructs in LNCaP cells 
as well as in PC-3 cells when transfected with functional AR. This 

finding suggests that activation of AR target genes is in part mediated 
by PKA dependent-mechanisms. Further PKA pathway is likely to be 
responsible for the phosphorylation of AR and regulate the level of AR 
in PCa cells.  Kim et al. [51] have demonstrated that forskolin enhanced 
PSA expression in the presence of DHT via CREB in LNCaP cells. The 
CREB was activated by PKA mediated phosphorylation at serine 133, 
which then binds to the CRE present at the 5/ regulatory region of 
PSA gene. The activated CREB may serve as co-activator of AR on the 
transcriptional activity of PSA [52]. Taken together, in the absence of 
androgen or at the condition of low androgen levels, PKA is able to 
regulate AR protein level and activate AR target genes through multiple 
mechanisms. 

Crosstalk between PKA and AKT pathway in PCas

The PI3K-Akt pathway plays an important role in malignant 
or aggressive phenotype of hormone independent prostate cancer, 
as elevated phosphorylated AKT is correlated with high Gleason 
grade [53]. It is well established that AKT plays an important role in 
proliferation, survival and cancer metastasis. The AKT is also termed as 
protein Kinase B (PKB) due to its resemblance to PKA. AKT is a family 
of serine/threonine kinases comprising AKT1, AKT2, and AKT3 [54]. 
For activation of AKT, phosphorylation at threonine 308 (Thr 308) 
and at serine 473 (Ser 473) is required. Phosphoinositide dependent 
kinase 1 (PDK1) is known to phosphorylate Thr 308. However, up to 
date, kinases that are responsible to phosphorylate AKT at Ser 473 have 
not been fully characterized. There might be a possibility that PKA is 
the second kinase and studies from Chung et al. [46] suggested that C 
subunit of PKA (PKA-C) may phosphorylate AKT at  Ser 473. 

Another component of the AKT pathway, the PI3K is also a 
substrate for PKA. The regulatory subunit of the PI3K, the p85α was 
shown to be phosphorylated by PKA at serine 83 (Ser-83) in the rat 
thyroid cell line FRTL-5 as well as in mouse fibroblast NIH3T3 cells 
[55]. The isoforms of GSK-3 that are downstream of the PI3-K-Akt 
pathway are also the substrates of PKA [56]. Another level of crosstalk 
between PKA and AKT is mediated via CREB. Besides its activation by 
PKA, CREB can also be activated through phosphorylation at serine 
133 by AKT. AKT mediated phosphorylation of CREB leads to the 
recruitment of the co-activator (CBP) and induces expression of anti-
apoptotic genes such as BCL-2 [53]. 

PKA pathways and AR in neuroendocrine differentiated 
PCas and therapy resistance 

Neuroendocrine cells (NE) cells with the dual property of secretory 
and paracrine or autocrine function comprises only a minor portion 
of the normal prostate gland. The NEs are thought to play a role in 
androgen-independent growth of PCa [57,58]. Increase in the number 
of NE cells was shown to correlate with tumor progression [59]. It was 
suggested that hormone therapy is ineffective in eliminating these NE 
cells, as they are likely androgen independent, thus NE tumor cells 
may contribute to the recurrence of CRPC and treatment resistance 
[60]. The enriched NE may establish paracrine or autocrine network 
to promote androgen independent growth. Furthermore, the NE cells 
secretes neuropeptides such as calcitonin, gastrin releasing peptide and 
vasoactive intestinal peptide (VIP) which can increase proliferation 
of PCa cells [50,61]. Accumulating evidence supports that the PCa 
cells can differentiate into the NE cells via the process termed as the 
neuroendocrine transdifferentiation (NED) under condition such 
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as androgen deprivation [59]. Sustained activation of PKA has been 
correlated with NED of PCa cells. The overexpression of the Cα subunit 
of PKA as well as stimulation of forskolin led to the neuroendocrine-
like differentiation, accompanied  by the expression of neuron specific 
enolase (NSE) and morphological change such as neurite extension in 
LNCaP cells [62]. It has been shown that LNCaP cells constitutively 
expressing PKA catalytic subunit promoted tumorigenic ability and 
tumor growth in nude mice under androgen deprivation condition 
[63]. 

The potential utility of the cAMP/PKA pathways as 
biomarkers for predicting therapy or as drug targets for 
designing therapeutic interventions for treatment of CRPC

It has been shown that overexpression of the subunit of PKAR1α 
is related with poor outcome of prostate cancer patients [64]. Further, 
patients with elevated level of PKAR1α showed poor response to 
radiation therapy along with short term androgen withdrawal, 
indicating the diagnostic and prognostic significance of R1α [65]. 
Radiation therapy has been used to treat locally advanced PCa with the 
effect similar to ADT therapy [66]. Expression of PKAR1α has been 
shown to be clinically important to predict the failure of radiation 
therapy (RT) alone or with ADT therapy in combinations in several 
large clinical trials [67]. Recently, Hensley et al. [68] have shown that, 
antisense molecule targeting the RIα subunit of PKA in combination 
with ADT and radiation therapy significantly increased apoptosis in 
vitro as well as in vivo. Similarly, it has been shown that combined 
knockdown of AR and R1α subunit of PKA enhanced growth arrest 
of prostate cancer cell in comparison to AR knockdown alone [36]. 
Moreover, the effect of antisense targeting of R1α subunit of PKA 
in combination with docetaxel has already been tested in a Phase I 
clinical trial with positive results [37,38]. Since higher concentration 
of intracellular cAMP level induces cell cycle arrest and attenuation 
of growth in various cell types [50], agents that increases cAMP level 
such as phosphodiesterase (PDE) inhibitors has been tested in prostate 
cancer cell lines. Nonselective PDE inhibitor such as papaverine led to 
growth arrest and differentiation of LNCaP cell line [39,50]. 

As noted above, tumor inhibitory effect of cAMP analog designated 
as 8-CI-cAMP has been demonstrated in various types of cancer cell 
lines including cancers of breast, lung, colon and leukemia [26,28,69]. 
Additionally PKAI-selective cAMP analogs (8-PIP-cAMP and 8-HA-
cAMP) have been developed and tested on several human cancer cell 
lines including ARO, NPA and WRO cells. The cAMP analog 8-Cl-
cAMP consistently inhibited cell growth, treatment with the PKAI-
selective cAMP analogs 8-PIP-cAMP and 8-HA-cAMP also induced 
growth arrest. Interestingly, PKAI-selective cAMP analogs induced 
growth arrest in cells carrying the BRAF oncogene, whereas 8-Cl-
cAMP induce apoptosis, apparently through activation of the p38 
MAPK pathway [70]. This finding suggests that 8-Cl-cAMP and the 
PKA I-selective cAMP analogs both have the growth inhibitory effects 
but act through different mechanisms. Given that cAMP analog 8-Cl-
cAMP and PKAI-selective cAMP analogs have shown promising 
effects on various types of aggressive cancer cells, it will be interesting 
to test these compounds in PCa cell lines and in PCa xenograft models.

Concluding Remarks and Future Directions
As discussed above, we have presented the emerging novel 

evidence on that PKA may play important role in the progression of 

CRPC and that PKA may regulate the AR activity and cross-talk with 
AR to enhance tumor cell growth and to render PCa cells insensitive to 
therapy. We also addressed the fact on that the molecular mechanisms 
underlying the functional interplay between the PKA pathways and 
AR is poorly understood. Only a few studies have been performed in 
using clinical samples from PCa patient cohorts. Expression patterns 
and levels of the key factors in PKA pathways in CRPC specimens 
and in metastatic lesions remained largely unknown. Because prostate 
cancer is a heterogeneous disease and multiple signal transductions 
cooperatively promote growth and survival of the cancer cells.  It 
will be interesting to determine whether different PKA subunits 
and their related proteins such as AKAPs could be used as novel 
biomarkers for predicting treatment response and outcome of CRPC. 
The transcription factor CREB1 appeared to be a potential therapeutic 
target, as the knockdown of CREB in human leukemic cells was able 
to attenuate of proliferation and promote tumor cell death [45,71], 
it will be important to examine these strategies in prostate cancer 
cells. Given that preclinical and laboratory studies have shown that 
targeting AR and PKA pathways in combination inhibited growth of 
PCa cells, it will be interesting to further develop and validate such 
novel therapeutic strategies for treatment of CRPC in large scales of 
studies. Understanding of the molecular mechanisms underlying the 
progression of CRPC and treatment resistance will provide novel 
insight for effective treatment of CRPC.
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