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Introduction
Iron is required for many vital functions including oxygen transport 

and energy metabolism. About ¾ of total body iron is present in heme 
associated with hemoglobin, myoglobin and cytochromes, while non-
heme iron is either stored in tissues or transported in the circulation 
bound to the serum protein transferrin [1]. Low body iron status 
results in iron-deficient anemia, impaired motor activity and poor 
brain development [2-5]. On the other hand, high iron stores promote 
oxidative stress triggering inflammatory responses and cellular 
injury that eventually leads to cell damage and death. The body has 
therefore developed protective mechanisms to maintain optimal iron 
concentration. Protective feedback includes dynamic regulation of the 
expression of transporters and proteins for iron storage. In addition to 
these systemic regulatory mechanisms, the unique lung environment 
must provide detoxification from metal-induced oxidative stress and 
pathogenic infections. Comprehensive reviews about the molecular 
mechanisms of iron regulation are available [6-8], therefore we will 
restrict our focus to the role of iron metabolism in lung injury and 
inflammation.

Overview of Iron Metabolism in the Body
The serum concentration of iron at steady-state is closely governed 

by absorption and clearance of iron. Both heme and non-heme forms 
of iron are absorbed from the gut, but through different transport 
mechanisms. Non-heme iron import begins with the reduction of ferric 
iron (Fe3+) by duodenal cytochrome b (Dcytb) protein to ferrous iron 
(Fe2+), which is then taken up by divalent metal transporter 1 (DMT1) 
at the duodenal apical membrane into the cytosol [9-11]. Less is known 
about the import of dietary heme, although candidate transporters have 
emerged [12,13]. Upon entering the intestinal enterocyte, intracellular 
iron can be incorporated in ferritin for storage or exported across the 
basolateral surface into circulation by ferroportin (FPN) [14,15]. FPN 
is assisted by hephaestin, a membrane-bound ferroxidase that converts 
Fe2+ to Fe3+ to promote iron binding to transferrin for its delivery to 
peripheral tissues [16].

Transferrin (Tf) delivers iron to erythroid cells where DMT1 

appears also to be essential for iron acquisition necessary for heme 
production [9,17]. Red blood cells contain the most abundant pool 
of iron in the body in the hemoglobin complex. After destruction of 
senescent erythrocytes, non-heme iron is stored within macrophages 
or returns to the circulation where iron is recycled for another round 
of erythropoiesis. There is no known pathway for iron excretion. Excess 
iron is stored in the liver and other parenchymal cells, typically in the 
ferritin-associated form. Since iron is efficiently conserved, body iron 
stores are mainly controlled by regulation of iron absorption [6,18]. 

The absorption of iron is regulated transcriptionally, post-
transcriptionally and post-translationally. The two major iron 
transporters, DMT1 and FPN, are negatively regulated by body iron 
status at the transcriptional level [19,20]. FPN transcripts and several 
DMT1 splice variants also contain Iron-Responsive Elements (IREs) 
that confer post-transcriptional regulation by Iron-Responsive Proteins 
(IRPs). In addition, the liver senses iron status through a series of 
molecular events to promote the release of hepcidin into the blood. 
Hepcidin is a 25-amino acid polypeptide hormone and plays a central 
role in iron homeostasis by responding not only to the body iron status 
but also to inflammation and hypoxia. Hence, the body iron level and 
plasma hepcidin concentration are positively related [21,22]. Hepcidin 
binds to FPN and facilitates its degradation, thereby reducing iron 
absorption [23]. Recent evidence hints at hepcidin regulation of DMT1 
by a degradative pathway as well [24]. Evolution has presumably found 
two pathways to protect the body from iron toxicity: a) regulation of 
absorption by controlling transporters via hepcidin and b) storage to 
detoxify excess iron by sequestering in a less reactive form.	

Iron homeostasis in the lung

In the lung, iron distributes in both extracellular and intracellular 
fluids. After intratracheal instillation of 59Fe in rats, radioisotope is 
found largely in lung tissues (54%) with remaining metal associated 
with bronchoalveolar lavage (BAL) protein as bound (22%) and 
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Abstract
Iron is required for many vital functions including oxygen transport and energy metabolism. Protective mechanisms 

maintain optimal iron concentration involving dynamic regulation of the transporters and iron storage proteins. In 
addition to these systemic regulatory mechanisms, the unique lung environment must provide detoxification from 
metal-induced oxidative stress and pathogenic infections. This review focuses on the unique role of iron metabolism 
in lung injury and inflammation.

The Role of Iron Metabolism in Lung Inflammation and Injury
Jonghan Kim and Marianne Wessling-Resnick*
Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA 

Journal of Allergy & TherapyJo
ur

na
l o

f Allergy & Therapy

ISSN: 2155-6121



Citation: Kim J, Wessling-Resnick M (2012) The Role of Iron Metabolism in Lung Inflammation and Injury. J Aller Ther S4:004 doi:10.4172/2155-6121.
S4-004

Page 2 of 6

ISSN:2155-6121  JAT, an open access journalJ Aller Ther Lung Disorders/Injury

unbound (5%) forms [25]. BAL cell pellets (1%) also contain iron, but 
this value might be underestimated because the recovery of BAL cells 
depends on the efficiency of lavage. Notably, systemic iron-deficiency 
with low serum and liver iron concentrations does not seem to affect 
lung iron levels [26], whereas iron overload is associated with high iron 
levels in the lung [27]. In addition, pulmonary epithelial lining fluids 
contain a variety of antioxidant molecules, including mucin, ascorbate, 
reduced glutathione and other proteins, which not only protect the 
lungs from oxidative stress [28], but also alter iron’s redox potential and 
bioavailability.

Lung epithelial cells express a variety of iron-associated molecules 
that serve specific functions (Table 1). These include transferrin (Tf) 
and its receptor (TfR), lactoferrin (Lf) and its receptor (LfR), ferritin, 
DMT1 and FPN. Macrophages express natural resistance-associated 
macrophage protein-1 (Nramp1) as well as most of the molecules that 
are expressed in the epithelial cells, while neutrophils participate in iron 
homeostasis by releasing several cell-specific modulators, including Lf, 
superoxide anion (O2-) and siderocalin. Pulmonary uptake of airborne 
particulate matter accounts for ingestion of 10 µg iron every day 
[29,30]. Although inhalation is not a major pathway of iron acquisition, 
continuous exposure to elevated levels of iron may result in greater 
risk of metal-related toxicity. Multiple cells participate in lung iron 
homeostasis, as reviewed in reference [38]. Figure 1 focuses on airway 
epithelium and diagrams the functions of iron-associated molecules 
listed in Table 1. Their functions are detailed below. 

Lung iron metabolism and infection

Iron metabolism is intrinsically linked to innate immunity by 
regulation of iron availability to pathogens. Infection and inflammation 
lead to lung injury. A considerable body of epidemiological evidence 
indicates that iron stores are associated with disease susceptibility and 
inflammatory responses. High iron status is related to many infectious 
diseases and inflammatory responses, as exemplified by malaria, viral 
infection and neurodegeneration. Detailed information about iron 
and systemic infection-inflammation can be found in several recent 
reviews [8,31]. For example, iron administration is known to increase 
mycobacterial growth [32,33], resulting in increased morbidity and 

mortality [34,35] and dietary iron is associated with occurrence and 
death from tuberculosis [36]. On the other hand, iron deficiency 
appears to provide a protective mechanism from infection by limiting 
iron utilization [37] and by improving the inflammatory condition [8]. 

Among the factors listed in Table 1, lung Tf not only imports 
iron from the airway into the epithelial cells but it also is involved in 
iron transport from the intracellular space to the outside of the cell, 
either blood or the airway. Unlike serum levels, pulmonary Tf is 
unchanged upon iron exposure [25]. Transcripts for its receptor are 
detected in bronchial epithelium, type II alveolar cells, macrophages 
and bronchus-associated lymphoid tissue. Since Tf expression is not 
influenced by systemic iron overload, a local regulation of Tf-TfR 
expression is postulated [25]. The expression of TfR diminishes in 
response to inflammation, efficiently depleting iron required for the 
growth of pathogens such as L. pneumophila, M. tuberculosis and M. 
avium [39-42]. Lf is another lung iron binding protein found in most 
surface secretions that also modifies iron availability. Airway iron binds 
to Lf and is taken up by LfR present in the lung epithelial cells and 
macrophages, followed by the storage of iron in ferritin. Lung infection 
appears to induce Lf release through inflammatory cytokines [31]. 
However, while exogenous Lf ameliorates pulmonary M. tuberculosis 
in a mouse model of iron overload [43] and opportunistic P. aeruginosa 
infection in patients with cystic fibrosis [44,45], Lf knock-out mice do 
not exhibit increased susceptibility to these pathogens [46]. 

Nramp1 has a more defined role in innate immunity as the name 
“natural resistance” implies. Nramp1 is a divalent metal transporter 
in phagosomes and reduces phagosomal iron [47] in a pH-dependent 
fashion and confers resistance to intraphagosomal parasites [47,48]. 
Infection also increases the expression of Nramp1 and Nramp1 knock-
out mice are more vulnerable to infection [49]. Nramp1 is also involved 
in suppression of IL-10 expression by iron mobilization, resulting in 
elevated iNOS production by macrophages, which restricts microbial 
growth [50-52]. 

While Tf significantly contributes to iron transport across the 
lung epithelium, non-Tf bound iron (NTBI) can also enter the cell 
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Figure 1: Iron homeostasis in the lung epithelium
Shown is a model of iron transport and homeostasis. Abbreviations used: 
Dcytb: Duodenal cytochrome b; DMT1: Divalent Metal Transporter 1; FPN: 
Ferroportin; Lf: Lactoferrin; LfR: Lactoferrin receptor; Tf: Transferrin; TfR: 
Transferrin receptor.

Molecules Known or proposed 
functions Lung cell type

Transferrin and its 
receptor

Import and export iron 
between airways or blood Epithelial, Macrophage

Lactoferrin and its 
receptor Import iron from the airway Epithelial, Macrophage, 

Neutrophil
DMT1 Import iron into the cell Epithelial, Macrophage

Nramp1 Import iron into the 
macrophage Macrophage

Duodenal cytochrome b
Convert Fe3+ to Fe2+ at 
the apical membrane of 
epithelial cells

Epithelial

Ferritin Store iron inside the cell; 
transport iron out of the cell Epithelial, Macrophage

Siderocalin

Binds iron in a complex with 
endogenous catechol or 
siderophores secreted by 
invading pathogens

Epiethelial, Neutrophil

Hepcidin

Hormone regulating 
systemic iron metabolism 
that may exert local control 
in the lung

Epithelial

Ferroportin Efflux intracellular iron to 
the airway Epithelial, Macrophage

Table 1: Characteristics of molecules that are involved in pulmonary iron homeo-
stasis.
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through the action of DMT1. DMT1 (also known as Nramp2) is a 
closely related homolog expressed in the lung [26,53,54]. In rat lungs, 
DMT1 protein is predominantly found in normal airway and alveolar 
epithelium, especially type II cells [53], while DMT1 transcripts are also 
found in bronchus-associate lymphoid tissue adjacent to large airways 
[53]. Unlike intestinal DMT1, lung DMT1 mRNA does not appear 
to be highly regulated by iron status [27,53,55]. As a consequence, 
pulmonary iron absorption is not always correlated with lung iron 
status [53]. For example, Dcytb, which is found in airway epithelial cells 
and functions as a ferrireductase to support DMT1 function, is elevated 
by iron exposure [56]. Furthermore, exposure of the lungs to iron 
oxide particles can promote up-regulation of DMT1 mRNA in alveolar 
macrophages and nearby epithelial cells [53]. Hence, DMT1 expression 
may be more directly altered by extracellular iron levels in the lung 
rather than by changes in intracellular or systemic iron levels. In 
addition, proinflammatory cytokines, such as TNF-α and interferon-γ, 
as well as inorganic fiber like asbestos, promote DMT1 up-regulation 
in bronchial epithelial cells [57,58]. These data suggest that DMT1 
contributes to uptake and detoxification of iron through regulation of 
non-IRE mRNA isoforms in the lung [57,59]. Indeed, Belgrade rats 
with DMT1 deficiency display increased pulmonary inflammation in 
the resting state [60]. Lung inflammation mediated by intratracheal 
instillation of lipopolysaccharide in Belgrade rats is greater than control 
rats [60]. Taken together, these observations indicate DMT1 functions 
to provide a protective barrier from toxic environmental stimuli 
resulting from airborne metals [59-61]. 

The hepcidin-FPN axis of regulation provides a more direct 
link between cellular iron availability and inflammation. This iron-
responsive peptide depletes circulating iron by inhibiting FPN function 
such that iron is unavailable to extracellular pathogens. While high 
serum iron appears to be associated with several microbial infections 
[62], reduced cellular iron levels found in hemochromatosis appear to 
provide resistance to infection, particularly intracellular pathogens. For 
example, M. tuberculosis growth and iron acquisition is significantly 
impaired in iron-depleted macrophages isolated from patients with 
HFE-associated hemochromatosis [63]. This mechanism is further 
supported by other models wherein FPN over-expression leads to 
impaired growth of intracellular pathogens with the addition of hepcidin 
enhancing their growth except in cells expressing mutant FPN [64,65]. 
Hence hepcidin plays an important role in pulmonary inflammation 
through its regulation of iron transport. In addition, hepcidin was 
initially identified as liver-expressed antimicrobial peptide (LEAP-1) 
due to its intrinsic antimicrobial activity and it has been proposed that 
hepcidin contributes to the innate defense system [66,67]. Interestingly, 
airway epithelial cells express hepcidin in response to interferon-γ, likely 
providing a direct protective mechanism against microbial growth [68]. 
These findings indicate two essential roles of hepcidin: a systemic iron-
dependent interaction with FPN to maintain balance between nutrition 
and bacterial and viral pathogenicity in lung tissue as well as the body 
and an iron-independent, direct antimicrobial activity [31].

There is emerging recognition of the role siderocalin plays in iron 
metabolism. Also known as neutrophil-gelatinase-associated lipocalin 
or lipocalin-2, it is produced by neutrophil granules and in epithelial 
cells in response to inflammation. Siderocalin interferes with bacterial 
iron acquisition to inhibit growth [69] and transports Fe3+ in the blood 
in a complex with endogenous catechol or siderophores secreted 
by invading pathogens [70]. Pneumonia induced by intratracheal 
instillation of E. coli is exacerbated in siderocalin-deficient mice [71]. 
Furthermore, infection with active pulmonary tuberculosis in patients 
appears to be inversely associated with serum levels of siderocalin [72]. 

Therefore, siderocalin appears to provide a substantial contribution to 
restriction of iron availability to pathogens and prevention of infection 
specifically in the lung. 

Lung injury and iron

Altered iron metabolism is linked to many lung diseases [38,73-75]. 
Elevated iron concentrations in the lung are associated with increased 
risk of pulmonary injury [38,75-77]. Among many organs in the 
body, the lung may have the greatest susceptibility to metal-induced 
oxidative stress due to its unique anatomical role for massive oxygen 
exchange along with large blood supplies. For example, inhaled iron 
from occupational settings or sites contaminated by heavy metals may 
promote reactive oxygen species. Changes in oxygen availability, such 
as hypoxia and hyperoxia, also alter iron metabolism. Lung injury is 
characterized by severe hypoxemia, increased endothelial and epithelial 
permeability, increased cytokine levels in the lungs and neutrophilic 
alveolar infiltrates [78]. Both acute and chronic lung injury leads 
to disruption of iron homeostasis in the lung [38]. The relationships 
between various types of lung injury and the regulation of iron 
metabolism are discussed below.

Acute respiratory distress syndrome (ARDS) is a type of 
inflammatory lung injury followed by endothelial activation and 
disruption of capillary membrane resulting in protein leakage [79,80]. 
Superoxide and hydrogen peroxide participate in the etiology of ARDS 
combined with ability of iron to catalyze more toxic reactive oxygen 
species [81-84]. Hence, iron can exacerbate ARDS [85]. High serum 
ferritin is associated with the development of ARDS [73]. Ferritin 
stores iron, distributing between extracellular and intracellular spaces 
to play a detoxifying role (Table 1, Figure 1). When iron levels increase, 
ferritin also increases to sequester reactive iron and as an acute reactive 
protein, ferritin synthesis is elevated during the inflammatory response. 
Increased ferritin levels observed in ARDS may result from increased 
tissue damage and lysis [73]. Since chelatable low molecular weight 
iron in respiratory extracellular fluid becomes elevated in patients with 
ARDS compared to normal healthy volunteers, it has been proposed 
that the presence of pro-oxidant iron in lung epithelial fluid may 
contribute to susceptibility to oxidative damage [28]. Lavage fluid of 
ARDS patients has elevated levels of total and nonheme iron as well 
as cellular content of Tf, ferritin and Lf [86]. This indicates impaired 
pulmonary homeostasis of iron in ARDS, although it is unclear whether 
this is due to general increase in membrane permeability or altered iron 
metabolism.

Pulmonary alveolar proteinosis (PAP) is characterized by abnormal 
accumulation of protein-rich surfactant in the lung and impaired 
pulmonary functions [87,88]. Patients with primary or idiopathic PAP 
show increased levels of iron, Tf, TfR, Lf and ferritin in lung lavage 
fluids, while the concentrations of antioxidants such as ascorbate and 
glutathione are reduced [74]. Moreover, intracellular concentrations of 
iron and ferritin are also elevated, suggesting metal-catalyzed oxidative 
stress [74]. It has been proposed that lower iron saturation of Tf 
decreases iron-mediated oxidative stress and rescues respiratory failure 
[89,90]. Secondary PAP can accompany infection, particle exposure 
and malignancies [38], most of which are associated with altered iron 
homeostasis. Together, a remarkable relationship between PAP and 
iron metabolism exists. 

Smokers, whether they have bronchitis or not, display elevated iron 
levels in the lung [91], presumably due to formation of iron complexes 
by particulate matter in cigarette smoke [38]. Patients with cystic 
fibrosis also have elevated levels of iron and iron-related proteins in 
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fibrosis also have elevated levels of iron and iron-related proteins in 
the lavage fluid and sputum compared with normal humans or patients 
with chronic obstructive pulmonary disease [92,93]. The elevated 
iron levels in cystic fibrosis are higher than those found in smokers 
[93] and are associated with increased inflammatory cytokines [92], 
indicating the significant role of iron in promoting oxidative injury 
in the lung [92]. Iron also modifies oxidative injury with ischemia/
reperfusion in the lung since released chelatable free iron promotes 
tissue oxidation during reperfusion [75]. This notion is supported by 
the result where desferrioxamine, an iron chelator, has been shown to 
partially protect against ischemic lung injury induced by reperfusion 
[94]. Lung transplantation is also associated with iron accumulation in 
the lung and increased levels of transferrin and its receptor, lactoferrin 
and ferritin, while systemic iron levels are unchanged [95,96]. These 
findings further suggest metal-induced damage via oxidative stress in 
the lung and implies a potential benefit of local chelation therapy to 
deplete iron from the lung [96].

Implications and Applications
It is now well recognized that the body has highly coordinated 

protective mechanisms from a variety of insults, such as pathogens, 
inflammation and oxidative stress by mobilizing or sequestering iron. 
Despite wide prevalence of lung injury and diseases that are associated 
with iron, there are few successful therapeutic advancements. 
Conventional methods to reduce iron burden in the body include 
dietary restriction, chelators and phlebotomy [38,97,98]. While 
still effective, these “passive or non-selective” interventions have 
considerable drawbacks such as systemic nutritional deficiency and 
severe adverse effects. These problems could be circumvented by “active 
or selective” therapies such as specific modulation of iron transporters, 
FPN and DMT1. For example, inhibitors of these transporters [99-101] 
might help decrease iron-associated cellular damage. Local or regional 
administration like inhalation of apotransferrin or other iron-chelating 
agents appear to be promising tools without perturbation of systemic 
iron homeostasis. Further study is clearly warranted to elucidate the 
benefits and risks of these potential therapeutic treatments in affecting 
changes in iron metabolism in lung injury and inflammation. 
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