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Introduction
Attachment of synovial fibroblasts to laminin-1 (LM-111) in the 

presence of TGF-β1 induces significant expression and secretion 
of MMP-3 and MMP-10 [1,2]. Moreover, TGF-β1 modulates the 
expression of integrins on fibroblasts [3] and MSC [4]. We therefore 
hypothesized that TGF-β1-mediated activation of MMP expression in 
MSC may be modulated by an integrin-dependent signalling pathway 
not only in synovial fibroblasts but also in MSC.

MSC attach to a variety of extracellular matrix proteins in vitro 
and in vivo. Long-term bone marrow cultures revealed that marrow 
stromal cells secrete collagens type I-VI [5-7], as well as laminins 
LM-411/421 and LM-511/521 [8-10], and thus build up their own 
microenvironment, also know as niche. Type I collagen (Col-1) is the 
most abundant protein component of the extracellular matrix in bone 
and connective tissues. Laminins are a family of glycoproteins mainly 
located in basement membranes [11]. LM-111 is predominantly 

expressed during embryonic development [12]. MSC express surface 
receptors including integrins facilitating their binding to collagens 
and laminins [4,13,14], and MSC bind to ECM proteins during 
developmental processes or tissue regeneration.

During wound healing, TGF-β1 is secreted in injured tissues 
[15,16]. MSC express the TGF-β receptors TGF-βRI, -RII and -RIII 
and are therefore responsive to this cytokine. TGF-β further regulates 
bone formation [17] and causes fibrosis in a variety of tissues [18-20]. 
These effects are associated with matrix turnover, i.e. the production 
of extracellular matrix components and induction of matrix degrading 
enzymes [21]. 

MMPs are expressed as inactive pre-pro-enzymes. The catalytical 
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Abstract
Transforming growth factor (TGF)-β1 activates the expression of matrix metalloproteinases (MMPs) in 

fibroblasts. Attachment of these cells to laminin-111 further raises the TGF-β1-induced expression of MMP-3 and 
MMP-10. Mesenchymal stromal cells (MSC) attach to a variety of extracellular matrix proteins during development 
and wound healing. We therefore investigated the TGF-β1-regulated expression of MMPs in MSC upon attachment 
to laminin-111 and type I collagen.

The expression of MMPs was determined by quantitative reverse transcription polymerase chain reaction and 
enzyme-linked immunosorbent assay. The TGF-β1 signalling pathways were investigated by immunoblot and by 
pharmacological blocking of Smad2, MEK/ERK and p38MAPK activities. 

Overall, TGF-β1 significantly activated the expression of mRNA encoding MMP-3 (p≤0.05), MMP-13 (p≤0.05) 
and TIMP-1 (p≤0.01) in MSC. Induction of MMP-10 was not significant. In contrast to our observation on fibroblasts, 
the attachment of MSC to laminin-111 did not affect the TGF-β1-induced expression of MMP-3 and MMP-10. 
Attachment to type I collagen reduced the TGF-β1-induced secretion of MMP-3 and MMP-10 compared to cells 
grown on laminin-111 or tissue culture plastic dishes. The expression of MMP-3 was induced by TGF-β1 via Smad2, 
ERK1/2 and p38MAPK. The expression of MMP-10 was regulated by Smad2 and ERK/1/2, whereas the expression 
of MMP-13 was shown to be p38 MAPkinase dependent.

We conclude that the regulation of MMP-3, MMP-10, and MMP-13 by TGF-β1 proceeds via distinct signalling 
routes. In contrast to the regulatory pathways in fibroblasts, we could not prove a co-signalling of TGF-β1- and 
integrin-dependent pathways for the regulation of MMP-3 and MMP-10 in MSC upon attachment to laminin-111. 
Therefore, MSC respond differently to TGF-β1 and extracellular matrix molecules compared to fibroblasts.
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domain common to all MMPs contains the conserved zinc-binding 
domain and a unique methionine-turn [22] which play a role in matrix 
degradation during physiological or pathological processes [22-26]. 
The stromelysins MMP-3 and MMP-10 degrade a variety of proteins 
including pro-collagen-I and thus contribute to matrix degradation in 
bone [27] and cartilage [28]. The collagenase MMP-13 cleaves type II 
collagen more efficiently than type I or III collagens and is considered 
to play an important role in physiological and pathological degradation 
of articular cartilage. The activity of many MMPs is regulated by tissue 
inhibitors of metalloproteases (TIMPs) [29].

We recently showed that TGF-β1 cooperates with integrin 
signalling upon attachment of synovial fibroblasts to LM-111, 
significantly boosting the expression of MMP-3 and MMP-10 [1,2]. 
Crosstalk between TGF-β and the integrin signalling pathway has been 
reported in epithelial cells as well [30]. We therefore investigated in this 
study whether attachment to LM-111 or attachment to another major 
component of the extracellular matrix, Col-1, affects the expression 
of MMPs in human TGF-β1-activated MSC. In addition, the TGF-β 
signalling pathways were studied by immunoblots and by specific 
inhibitors blocking the phosphorylation of Smad2, the p38 mitogen-
activated protein kinase (MAPK) and extracellular signal-regulated 
kinases (ERK)1/2. 

Materials and Methods
Isolation and characterization of MSC

After written consent, the MSC were isolated by density gradient 
centrifugation from femoral bone marrow aspirates of patients 
undergoing endoprosthetic surgery (n=15). The study was approved by 
the local ethics committee. MSC were grown in MSC Growth Medium 
(Lonza, Basel, Switzerland) and characterized as described recently 
[4,31]. Briefly, flow cytometry was performed to confirm the surface 
expression of CD73 (BD Pharmingen, San Diego, CA, USA), CD90, 
CD146 (R&D Systems, Minneapolis, MN, USA) and CD105 (Serotec, 
Raleigh, NC, USA), as well as lack of CD11b, CD14 (BD Pharmingen), 
CD34 (Biolegend, San Diego, CA, USA), and CD45 (R&D Systems) 
on the cells obtained [31,32]. Further, we proved their ability to 
differentiate in adipogenic, chondrogenic and osteogenic lineages by 
established protocols [31,33]. Differentiation of MSC to adipogenic 
cells was detected by staining the intracellular lipid vesicles with Oil 
Red-O. The proteoglycans in chondrogenically differentiated pellets 
were detected by Alcian blue staining. Detection of the mineralized 
extracellular matrix by von Kossa staining was used to detect osteoblasts 
after in vitro differentiation of MSC.

Expression of MMPs upon stimulation with TGF-β1 and 
attachment to ECM proteins

The cells were plated at 5x105 MSC/ flasks in tissue culture 
polystyrene (TCPS) dishes, LM-111-coated dishes (Greiner Bio One 
(Frickenhausen, Germany), or Col-1-coated dishes (BD Biosciences). 
After attachment, the cells were stimulated with 10 ng/mL TGF-β1 
(Roche, Mannheim, Germany) or left untreated. After 24 h of 
incubation, supernatants were collected to investigate the production of 
MMP-3 (R&D systems), MMP-10 and MMP-13 (tebu-bio, Offenbach, 
Germany) by enzyme linked immuno-sorbent assay (ELISA) in a 
microplate reader (EL800, BioTek, Winooski, VT) according to the 
guidelines of the suppliers. 

The cells were harvested at the same time and RNA was 
isolated (RNeasy Mini Kit, Qiagen, Hilden, Germany). Reverse 
transcription of RNA was carried out employing the RT-for-PCR kit 

(Clontech, Mountain View, CA, USA). Transcript levels of MMP-
1, -2, -3, -9, -13 and TIMP-1, -2 and -3 were measured after reverse 
transcription by quantitative polymerase chain reaction (qRT-
PCR) using commercially available primers (Search LC, Heidelberg, 
Germany). For MMP-10 the following reagents were used: forward 
primer: 5’-GGCTCTTTCACTCAGCCAAC-3’, reverse primer: 
5’-TCCCGAAGGAACAGATTTTG-3’, product size: 175 bp, access 
number NM_002425.1). The amplification of cDNA was performed 
in 35 cycles (LightCycler 1.5, Roche, Mannheim, Germany). Following 
one initial cycle (95°C 10 sec, 68°C 10 sec, 72°C 16 sec, temperature 
transition rate 20°C sec-1) the annealing temperature was dropped 
to 58°C with a step size of 0.5°C. PCR amplification was evaluated 
by the “fit-points” method [34]. The data represent the mean mRNA 
expression levels of MMP and TIMP normalized to the expression 
levels of the housekeeping gene GAPDH. Known amounts of a 
recombinant standard DNA were used to calibrate each run. The 
quality of amplification was investigated by melting point analysis 
(95°C, 58°C 10s, 95°C). The PCR products were then separated by 
electrophoresis on 1.5% agarose gels and visualized by UV-activated 
ethidium-bromide fluorescence to confirm the expected size. 

TGF-β signalling pathway
MSC incubated in TCPS flasks over night in complete medium 

were activated by addition of 10 µg/mL of TGF-β1 for 30, 60, or 120 
minutes, harvested, lysed and the protein extracts were separated by 
SDS-PAGE as described [3]. Untreated cells served as controls (0). 
The proteins were transferred to nitrocellulose membranes, blocked 
and probed overnight at 4°C with mAb specific for phospho-Smad2 
(Ser465/467), phospho-ERK1/2 (Thr202/Tyr204), phospho-p38MAPK 
(Thr180/Tyr182).  Detection of total p38MAPK served as the loading 
control. These mAb’s were obtained from Cell Signaling Technology 
(Beverly, MA). After rinsing of the membrane, binding of the primary 
antibodies was detected by peroxidase-labelled goat anti-rabbit-IgG 
antiserum (1:1000, Dianova). The binding of antisera was visualized 
by enhanced chemoluminescence (ECL, Amersham Biosciences, 
Freiburg, FRG) and recorded by a luminescence-sensitive CCD camera 
system (Diana, Raytest Inc. Straubenhardt, FRG).

To investigate the contribution of the signalling pathways on 
regulation of the MMPs, MSC were grown in TCPS flasks over night 
and the signalling pathways were blocked by addition of the following 
inhibitors: 100 nM of TGF-β RI kinase inhibitor (ALK5i) which blocks 
the phosphorylation of Smad2/3, or 20 µM of the MEK inhibitor which 
blocks the phosphorylation of ERK1 and ERK2 (PD 98059), or 20µM 
of the p38MAPK inhibitor (SB 203580) (all from Calbiochem). After 
30 min pre-incubation with these inhibitors, cells were stimulated 
by addition of 10 ng/mL TGF-β1. Cells activated by TGF-β without 
inhibitors and cells left untreated served as controls. After 24 h, 
supernatants were collected to perform ELISA assays as described 
above; and RNA was isolated to perform qRT-PCR to quantify 
transcript levels of MMP-3, MMP-10 and MMP-13. 

Statistical analysis
The mean values, corresponding standard deviations and statistical 

significance between groups of data were assessed with a two-sided 
paired Student’s t-tests using the GraphPad Prism® software. Probability 
values (p) equal to or less than 0.05 (*) or 0.01 (**) were considered to 
be statistically significant and marked in the figures accordingly.

Results
Characterization of isolated MSC

MSC were characterized by flow cytometry and differentiated as 
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described recently [4]. The MSC displayed strong staining for CD73, 
CD90, CD105 and CD146, and absence or low expression of CD11b, 
CD14, CD34 and CD45 (see supplement, Figure S1). The MSC showed 
a fibroblast-like morphology and could be differentiated in vitro into 
adipogenic, chondrogenic and osteogenic lineages (see supplement, 
Figure S2). 

Effect of TGF-β1 on the expression of MMPs and TIMPs

To study the effect of TGF-β1 on the expression of MMPs and 
TIMPs, MSC were seeded in TCPS dishes and activated by addition of 
TGF-β1. Cells without TGF-β1 stimulation served as controls (Figure 
1). TGF-β1 induced a significant, 3-fold elevation of MMP-3 mRNA 
(p<0.05, n=8), and a 26.7-fold increase for MMP-13 (p<0.05, n=9; 
Figure 1). The expression of MMP-10 was elevated 3-fold as well (n.s. 
n=8). The expression of TIMP-1 was significantly elevated by TGF-β1 
(1.8-fold, p<0.01, n=7). For all other factors, including MMP-1, MMP-
2, MMP-9, TIMP-2, and TIMP-3, a regulatory effect of TGF-β1 was not 
observed in MSC at the transcript level (Figure 1). 

Attachment to extracellular matrix proteins affects the 
expression of MMPs

Since the expression of MMP-3 and MMP-13 was significantly 
enhanced by pre-treatment of MSC with TGF-β1, and TGF-β1 
also resulted in elevated transcript levels of MMP-10, this effect was 
investigated in more detail in a second series of experiments. Here, the 
influence of the extracellular matrix proteins Col-1 and LM-111 on 
TGF-β1-dependent MMP regulation was investigated as well. When 
incubated in normal TCPS cell culture flasks, activation of MSC with 
TGF-β1 induced a solid, 6.7-fold elevation of transcripts encoding 
MMP-3 (Figure 2A), a 25.1-fold elevation of MMP-10 (Figure 2C) 
and a 48.2-fold elevation of MMP-13 (Figure 2E; Table 1) encoding 
mRNA. In MSC attached to Col-1, the addition of TGF-β1 induced 
on transcript levels a comparable elevation of MMP-3 (5.6-fold, Figure 
2A), MMP-10 (36-fold, Figure 2C) and MMP-13 expression (83.2-fold, 
Figure 2E; Table 1). Moreover, in MSC attached to LM-111, TGF-β1 
induced significant elevations in the expression of MMP-3 (5.7-fold, 

p<0.05), MMP-10 (20.4-fold, p<0.05) and MMP-13 (80.5-fold, p<0.05; 
Figure 2, Table 1). But in contrast to our results on synovial fibroblasts 
[1,2], attachment of MSC to Col-1 or LM-111 did not elevate the TGF-
β1-activated expression of MMP-3 or MMP-10 beyond the expression 
levels recorded in TGF-β1 stimulated MSC grown in TCPS flasks 
(Figure 2A, 2C, 2E). 

To investigate the expression of the MMPs on the protein level, 
supernatants of MSC were collected and tested by ELISA. The secretion 
of MMP-3 was enhanced by TGF-β1 approximately fivefold above 
controls (n.s., n=5, Figure 2B), and that of MMP-10 fifteen-fold above 
controls (p<0.01, n=5, Figure 2D). The basal MMP-13 protein levels 
were below the detection limit. However, TGF-β1 stimulated the 
secretion of MMP-13 in MSC (Figure 2F). 

Attachment of MSC to Col-1 in absence of TGF-β1 did not 

Figure 1: TGF-β1-regulated transcript levels of MMPs and TIMPs. 
MSC were stimulated by TGF-β1 (10 ng/mL, 24 h, black bars) or left 
untreated (white bars). The transcript levels encoding MMPs and TIMPs 
were measured by qRT-PCR and normalized to the expression levels 
of GAPDH. Basal expression of MMP-2, TIMP-1, -2, and -3 was higher 
compared to the other MMPs. TGF-β1 elevated the mRNA expression of 
MMP-3 (p<0.05), MMP-13 (p<0.05), and MMP-10 (n.s.). TIMP-1 transcripts 
were raised as well (p<0.01), whereas the mRNA levels of MMP-1, MMP-9, 
TIMP-2, and TIMP-3 either dropped or remained unchanged. The results 
represent the mean values ± SD (n≥7 donors) of the mRNA transcript levels 
of the indicated MMPs and TIMPs in MSC. Asterisks indicate significance (* 
p≤0.05 / ** p≤0.01) of activated cells vs. controls without TGF-β1 stimulation.

Figure 2: Modulation of the TGF-β1-induced expression of MMPs. The 
mRNA and protein expression levels of MMP-3 (A, B), MMP-10 (C, D) and 
MMP-13 (E, F) were measured in MSC grown on different substrates as 
indicated. Cells were exposed to 10 ng/mL TGF-β1 for 24 h (black bars) or 
left untreated as controls (white bars). TGF-β1 elevated the expression of 
MMP-3, MMP-10, and MMP-13 in MSC independently of the substratum 
on which the cells were grown. The increase in MMP-3 and -10 transcript 
and protein amounts were lower in MSC incubated on col-1 than in MSC 
attached to plastic or laminin-111. The expression of MMP-13 was not 
affected by attachment to collagen. The results are depicted as mean ± 
SD of at least 4 independent experiments. Asterisks indicate significance (* 
p≤0.05 / ** p≤0.01) of activated cells vs. controls without TGF-β1 stimulation.  

MMP-3 MMP-10 MMP-13
TCPS 1.77* 10-4 2.53* 10-4 2.17* 10-4

TCPS + TGFß 1.2*10-3 6.35*10-3 1.04* 10-2

     induction 6.7-fold 25.1-fold 48.2fold, p<0.011
Col-1 1.32* 10-4 2.75* 10-4 2.13* 10-4

Col-1 + TGFß 7.41**10-4 9.89* 10-3 1.77* 10-2

     induction 5.6-fold 36.0-fold 83.2-fold, p<0.03
LM-111 1.78* 10-4 2.68* 10-4 2.2* 10-4

LM-111 + TGFß 1.1* 10-3 5.84* 10-3 1.77* 10-2

     induction 5.7-fold, p<0.028 20.4-fold, p<0.026 80.5-fold, p<0.04

Table 1: Mean of normalized steady state transcript levels of MMP-3, MMP-10, and 
MMP13 in MSC (cells from nine donors each) grown in tissue culture polystyrene 
dishes (TCPS), or in dishes coated with type l collagen (Col-1) or laminin-111 (LM-
111).
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significantly alter the MMP-3 secretion in comparison to that in TCPS 
adherent MSC (11.5 pg/mL ± 6). But when exposed to TGF-β1, MSC 
growing on Col-1 produced less than half of MMP-3 (34.4 pg/mL ± 
17, n=5) compared to TGF-β1 activated MSC on TCPS (82.5 pg/mL ± 
66, n=5). The difference in production of MMP-3 by TGF-β1-activated 
MCS on TCPS versus Col-1 did not reach significance. The attachment 
of MSC to LM-111 did not affect their TGF-β1-induced expression of 
MMP-3 (77.8 pg/mL ± 58, n=5) compared to cells on TCPS (Figure 
2B). 

Similar results were obtained for MMP-10. TGF-β1 elevated the 
secretion of MMP-10 in MSC on TCPS (183.2 pg/mL ± 79, p<0.01, 
n=5), as well as on LM-111 (183.2 pg/mL ± 51, n=5, Figure 2D). Note 
that the MMP-10 secretion from TGF-ß1 activated MSC grown on 
Col-1 (76.3 pg/mL ± 32, p<0.01, n=5) remained 2.4 fold below the 
production measured in supernatants of MSC incubated on plastic 
or LM-111. Again, the difference in production of MMP-10 by TGF-
β1-activated MCS on TCPS versus Col-1 did not reach significance. 
Spontaneous secretion of MMP-13 was at or below detection levels. 
TGF-β1 stimulated the production of MMP-13 in MSC attached to 

TCPS, Col-1 and LM-111. The attachment on Col-1 had no effect on 
the secretion of MMP-13, but cellular contact to LM-111 augmented 
the release of MMP-13 to some extent (Figure 2F). The expression 
of MMP-1, MMP-2 and MMP-9 and of TIMP-1, -2 and -3 was not 
affected by the attachment of the cells to Col-1 or LM-111 (data not 
shown). 

TGF-β1 signalling pathway

In order to better understand the TGFβ1-regulated expression of 
the MMPs in MSC, we investigated signal transduction by Smad2, 
ERK- and p38MAPK, (see supplement, Figure S3), and tracked the cell 
signalling pathways (Figure 3). 

Activation of Smad2 as visualized by phosphorylation of the 
protein was recorded 30 to 120 minutes after addition of TGF-β1, 
peaking one hour after induction. Prior to addition of TGF-β1, 
phosphorylated Smad2 was not detected in MSC (see supplement, 
Figure S3). Phosphorylation of the 43 kDa ERK1 was slightly raised, 
again peaking after 60 minutes of activation, whereas phopshorylation 
of the 41 kDa ERK2 was more prominent. A strong increase in signals 

Figure 2: Modulation of the TGF-β1-induced expression of MMPs. The mRNA and protein expression levels of MMP-3 (A, B), MMP-10 (C, D) and MMP-13 (E, F) 
were measured in MSC grown on different substrates as indicated. Cells were exposed to 10 ng/mL TGF-β1 for 24 h (black bars) or left untreated as controls (white 
bars). TGF-β1 elevated the expression of MMP-3, MMP-10, and MMP-13 in MSC independently of the substratum on which the cells were grown. The increase in 
MMP-3 and -10 transcript and protein amounts were lower in MSC incubated on col-1 than in MSC attached to plastic or laminin-111. The expression of MMP-13 
was not affected by attachment to collagen. The results are depicted as mean ± SD of at least 4 independent experiments. Asterisks indicate significance (* p≤0.05 
/ ** p≤0.01) of activated cells vs. controls without TGF-β1 stimulation.  



Citation: Warstat K, Felka T, Mittag F, Kluba T, Rolauffs B, et al. (2011) The TGF-β1-Induced Expression of Matrix Metalloproteinases in Mesenchymal 
Stromal Cells is Influenced by Type of Substrate. J Tissue Sci Eng 2:108. doi:10.4172/2157-7552.1000108

Page 5 of 7

Volume 2 • Issue 3 • 1000108
J Tissue Sci Eng
ISSN:2157-7552 JTSE an open access journal 

indicating phosphorylation of p38 MAPK were not observed in TGF-
β1-induced MSC compared to control cells. Detection of total p38 
MAPK protein served as loading control (Figure S3).

The addition of TGF-β1 induced the MMP-3 mRNA expression 
in MSC almost 5-fold. Upon exposure of the MSC to the inhibitors 
affecting AKL5/Smad2, respectively, MEK/ERK, or p38 MAPkinase, 
MMP-3 mRNA expression levels returned to background levels 
(Figure 3A). With these inhibitors the TGF-β1 induced MMP-3 
protein expression was significantly reduced from 119 pg/mL to 
23.1 pg/mL (ALK5i/Smad2 inhibitor, p<0.05), 18.9 pg/mL (MEK/
ERK inhibitor, p<0.05), and 36.2 pg/mL (p38 MAPkinase inhibitor, 
p<0.05), respectively, (Figure 3B). Thus, in MSC, TGF-β1 regulated the 
expression of MMP-3 mainly via activation of Smad2, ERK1/2, and p38 
MAPK.

TGF-β1 elevated the MMP-10 transcript levels more than 5-fold. 
They were reduced slightly by the AKL5/Smad2 inhibitor and by the 
MEK/ERK inhibitor PD98059, respectively (Figure 3C). In contrast 
to regulation of MMP-3, the p38 MAPK inhibitor had no significant 
effects on the mRNA expression of MMP-10 (Figure 3C). The MMP-10 
protein level was elevated from 17.4 pg/mL to 196 pg/mL by TGF-β1 
and was diminished to 28 pg/mL by addition of the AKL5/Smad2 
inhibitor, to 61 pg/mL by the MEK/ERK inhibitor, and to 109 pg/mL 
by the p38 MAPkinase inhibitor (Figure 3D). Thus, in MSC, TGF-β1 
regulated the expression of MMP-10 mainly via activation of Smad2 
and ERK1/2. 

In contrast, the TGF-β1-induced MMP-13 mRNA expression could 
be diminished by addition of the p38 MAPkinase blocker SB 203580. 
TGF-β1 induced the MMP-13 mRNA expression significantly (8-fold, 
p<0.05). The addition of the SB203580 reduced the TGF-β1-induced 
expression of MMP-13 significantly to (p<0.01), whereas the TGF-βRI 
and MEK/ERK inhibitors had only minor and non-significant effects 
(Figure 3E). Spontaneous release of MMP-13 from MSC was very low 
in vitro but was elevated more than 10-fold above the detection limit 
of the ELISA by TGF-β1 (Figure 3F). In the presence of each of the 
inhibitors interfering with signalling of ALK5/Smad2, MEK/ERK or 
p38MAPK, the production of MMP-13 was reduced to the detection 
levels of the assay (Figure 3F). Thus, on the transcript level, TGF-β1 
appears to regulate the expression of MMP-13 mainly via activation of 
p38 MAPK, and to a lesser extent through Smad2 and ERK1/2. 

Discussion
TGF-β1 significantly stimulated the expression of MMP-3, 

MMP-10 and MMP-13 in MSC. Similar effects are known to occur 
in other regenerative cell types. In subepithelial myofibroblasts, the 
expression of MMP-3 is induced by TGF-β during repair processes in 
the gastrointestinal mucosa [35]. Comparably, in synovial fibroblasts, 
TGF-β regulates the expression of MMP-3 and MMP-10 [2]. MMP-
3 and MMP-10 were recently detected in endometrial regenerative 
cells [36], and TGF-β regulates the expression of MMP-3, MMP-10 
and MMP-13 in keratinocytes during wound healing [37-39]. During 
chondrogenesis and endochondral ossification, MMP-3 and MMP-13 
play an important role in tissue remodelling [25,40,41]. 

In MSC, an activation of MMP-2 and MT1-MMP was reported 
after 72 h of treatment with TGF-β1, which caused increased migratory 
ability of the cells. But no change in the expression of MMP-2, MT1-
MMP and TIMPs was observed after 24 h of TGF-β1 treatment [42]. 
With respect to the TIMPs this corroborates our results, and suggests a 
time-dependent induction of MMP expression by TGF-β1. Therefore, 

MMP-3, MMP-10 and MMP-13 could be among the first proteases 
induced by TGF-β1, leading to matrix degradation in the MSC niche. 
Later on, other MMPs, such as MMP-2 and MT1-MMP, could promote 
migration of the MSC to their target tissue during wound healing.

TGF-β1 signalling employs the TGF-β receptors TGF-βRI and -RII, 
and the intracellular pathways via Smad2/3, ERK1/2 and p38MAPK. 
By aid of activation-specific antibodies and by use of specific inhibitors, 
we could prove that in MSC the expression of MMP-3 is elevated by 
TGF-β1 via all three pathways, Smad2, ERK1/2 and p38MAPK. This 
has also been seen in synovial fibroblasts [1,2]. Thus, the expression 
of MMP-10 is regulated mainly by Smad2 and ERK1/2 in MSC, and 
expression of MMP-13 is regulated in TGF-β1 activated MSC foremost 
via p38MAPK. In chondrocytes IL-1β activates the expression of 
MMP-13 in the same manner [43]. 

Furthermore, the regulation of MMPs also depends on the 
substratum to which the cells attach [44-47]. The expression of MMP-
3 and MMP-10 is not affected by the attachment of MSC to LM-111. 
But release of MMP-13 is elevated when MSC adhere to LM-111. In 
contrast, when MSC are grown on Col-1-coated dishes, the TGF-β1-
induced protein expression of MMP-3 and MMP-10 decreases. The 
attachment of MSC to Col-1 and LM-111 is amongst others mediated 
by integrins [13]. Integrin α2β1 plays a key role in the attachment of 
MSC to Col-1. The activation of MSC by TGF-β1 enhances the binding 
of MSC to this protein [4]. We assume that integrins not only provide 
contact points for the attachment of MSC to Col-1 or LM-111, but also 
influence the TGF-β1-induced signalling pathways in these cells. 

In contrast to MSC, attachment of synovial fibroblasts to LM-111 
modulated the expression of MMP-3 and MMP-10, and the TGF-β1 
induced expression of MMP-3 and MMP-10 was even enhanced in 
fibroblasts [1,2]. Activation of osteoblasts by TGF-β1 also activated 
the expression of MMP-3 and MMP-10. As reported in this study for 
MSC, in osteoblasts the TGF-β-facilitated expression of MMPs was 
not enhanced by attachment to LM-111, and was also not ameliorated 
by attachment to Col-1 (unpublished observation). Differences in 
expression of integrins or other extracellular matrix binding cell 
surface proteins between MSC, fibroblasts and osteoblasts may account 
for the distinct sensitivities of these cells in response to cytokine plus 
substratum-dependent cell activation.

Crosstalk between cell-matrix attachment and cytokine- or growth 
factor-induced signalling is known to occur in many cell types, e.g. 
in epithelial cells [30], where the “crossing point” between the two 
signalling pathways is the p38MAPK. A similar crosstalk could exist 
in MSC, enhancing the expression of MMP-13 upon attachment to 
LM-111 and exposure to TGF-β1. Moreover, a paracrine crosstalk 
may exist between the MSC themselves, and the individual setup of the 
experiment may influence the outcome. Therefore the induction index 
computed for the MMPs in a given sets of experiments (e.g. Figure 1, 
optimized for mRNA yield) will differ from the results observed in 
another set of investigations (e.g. Figure 2, optimized for exploring key 
transcripts and cell supernatants from the same culture). 

The co-regulation of MMPs by TGF-β1 and integrin receptors may 
play a role during developmental processes such as osteogenesis, and 
in the chondrogenic differentiation of MSC. During these processes, 
a permanent reconstruction of the ECM takes place in the developing 
tissues. Furthermore, the regulated expression of MMPs in response to 
a combination of growth factor signalling and integrin-mediated ECM 
recognition may allow directed migration of MSC from their niches 
into the target tissue during development or wound healing [42]. 
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Moreover, modulation of cytokine responses by the composition of 
biomaterials and scaffolds may also be a useful tool to further improve 
the outcome of tissue engineering. The cells applied together with such 
an implant will degrade the scaffold during wound repair. Scaffolds 
generated from a substratum promoting for instance a mild expression 
of MMPs at the rim of the implant could facilitate its integration. But 
controlling the expression of MMPs in a load-bearing zone in the center 
of the scaffold by e.g. Col-1 could indirectly promote the deposition of 
an extracellular matrix by lowering the expression of the stromelysins 
MMP3 and MMP10. This may then accelerate the regeneration of the 
defect. This, however, must be addressed specifically in a separate study 
in the future.
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