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treatment in MM-AN melanoma cells [5]. However, their roles in cells 
insensitive to T-oligo treatment, such as RPM-EP cells, have not yet 
been established.

Phosphorylation of γH2AX is one of the key events associated 
with DDRs [15]. Eller et al. [16] have demonstrated that cells treated 
with T-oligo contain foci that co-localize with telomeres. We have 
previously demonstrated that T-oligo up regulates differentiation 
markers tyrosinase, MART-1, TRP-1, and HMB-45 (gp-100) in vitro 
[2,9]. These proteins are tumor associated antigens (TAAs) that induce 
differentiation, and are potential targets for melanoma immunotherapy 
[2,17-19]. In the present investigation, the efficacy of T-oligo was 
studied on a panel of 6 melanoma cell lines, since melanoma cells 
express heterogeneity [20]. We also examined the uptake of T-oligo 
in MM-AN and RPM-EP melanoma cells, as well as the induction of 
DDRs after treatment in vitro. Furthermore, we investigated the efficacy 
of T-oligo after delivery in vivo using Alzet pumps. Additionally, 
T-oligo’s effect on several differentiation markers/TAAs, such as
tyrosinase, MART-1, TRP-1 and gp-100 was studied in vitro and in
vivo. Our results further characterize T-oligo’s signalling mechanism
and establish key downstream signalling targets involved in mediating
T-oligo induced anticancer effects.
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Introduction
This year 76,690 individuals in the U.S. will be diagnosed and 

9,480 will die from melanoma [1]. Current chemotherapies used in the 
treatment of metastatic melanomas fail to show specificity for malignant 
transformations and hence demonstrate toxicity against normal cells, 
as well as stem cells [2]. Molecularly targeted therapies with low toxicity 
against telomerase, a protein known to be over expressed in malignant 
cells, have been established, however, drug resistance is still a major 
concern [3]. In this study, we explored a potent and less toxic approach 
for melanoma therapy using T-oligo, an oligonucleotide homologous 
to the 3’ telomere overhang. Telomeres are protective structures 
composed of tandem nucleotide repeats (TTAGGG) at the ends of 
chromosomes, which allow cells to distinguish between healthy and 
damaged chromosome ends [4]. Disruption of the telomere overhang 
leads to DNA damage responses (DDRs) [4], and ultimately apoptosis 
and/or senescence [2,5-7], making targeted telomere disruption an 
attractive anti-cancer therapeutic option [8]. T-oligo, an 11-base 
oligonucleotide, has been proposed to prevent telomere stabilization 
[9], and induces apoptosis and differentiation in malignant cells with 
little or no effect on normal cells [2,10,11]. Furthermore, T-oligo can be 
used in cancer cells to study the different mechanisms of DDRs caused 
by telomere disruption [5,10]. Thus, T-oligo is being investigated as 
a novel cancer therapeutic. It has been shown that p53 plays a major 
role in the intrinsic and extrinsic apoptotic pathways [12,13] and p53 
wild-type cell lines undergo increased apoptosis compared to p53 
mutant lines [13]. Although MM-AN cells do not have active p53, 
they do contain its homologue p73, which is believed to compensate 
in part for the induction of apoptosis normally mediated by p53 [5]. 
E2F1 is a transcription factor that plays important roles in regulating 
the action of tumor suppressor proteins and directly activates p73 
[14]. Previously, our group has shown strong evidence suggesting that 
these aforementioned proteins cooperate to induce DDRs after T-oligo 
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Traditional chemotherapy is the first treatment option for the majority of cancer patients, but due to harsh and toxic 

side effects, more targeted therapies are needed. T-oligo is an oligonucleotide homologous to the 3’ overhang of the 
telomere. It induces several DNA damage and anti-cancer responses similar to experimental telomere loop disruption, 
including senescence, apoptosis and differentiation in malignant cells. To explore T-oligo’s anticancer potential, a panel 
of 6 malignant melanoma cell lines was treated with T-oligo. Melanoma cell lines with functional p53 or p73 exhibited 
cell death ranging from 11.80% to 31.73% after T-oligo treatment, with MU and MM-AN melanoma cells expressing 
the maximum response. There was no significant response in p53 and p73 null RPM-EP cells. Based on these results, 
MM-AN cells were chosen as a model system to study T-oligo’s effects  in vitro and in vivo. To further elucidate its
mechanism of action, pro-apoptotic and differentiation markers typically up regulated in responsive melanoma cell lines
were studied in RPM-EP cells. FACS analysis and immune fluorescence studies confirmed uptake of fluorescein labeled
T-oligo in both cell lines. Western blotting and confocal microscopy studies indicated up regulation of YH2AX after
T-oligo treatment in MM-AN cells. In RPM-EP cells, expression of p73 and TRP-1 was not detected, nor was there up
regulation of E2F1 and Tyrosinase. For in vivo experiments, SCID mice were injected with MM-AN cells to form tumors
on their flanks, which were later treated with T-oligo and complementary oligo using Alzet pumps. Results demonstrated
a 98% reduction in tumor size, as well as up regulation of differentiation markers important for anti-tumor immune
responses. This study provides novel evidence which further establishes p53/p73 as crucial downstream signalling
proteins and important players in T-oligo mediated anti-cancer effects in melanoma. Our results clearly demonstrate that 
T-oligo may be an effective and novel therapeutic for melanoma.
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Materials and Methods
Cell lines and cell culture

MM-AN, MU, PM-WK, MM-RU, MM-MC and RPM-EP 
melanoma cells were obtained by explant culture [21], and were grown 
in MEM (Cat No: MT-10-010-CM, Thermo Fisher Scientific, Pittsburg, 
PA) supplemented with 10% (v/v) fetal bovine serum (Cat No: S11150, 
Atlanta Biologicals, Lawrenceville, GA) and 1% (v/v) antibiotic/
antimycotic (Cat No: 15240 Invitrogen, Grand Island, NY). 

Antibodies

Antibodies used in this study include anti-tyrosinase monoclonal 
antibody (clone T311, Nova-castra, New Castle upon Tyne, UK), 
anti-TRP-1 monoclonal antibody (cloneTa99, Signet, Dedham, MA, 
USA), anti-gp-100 monoclonal antibody (MO 634, Dak Corporation, 
Carpinteria, CA, USA), anti-MART-1/Melan-A monoclonal antibody 
(clone M2-7C10, Signet, Dedham, MA, USA), Pan Melanoma cocktail 
(Biocare, Tempe, AZ), anti-phospho-H2AX (pSer-139) antibody 
(Millipore, Billerica, MA) and β-actin antibody (Sigma-Aldrich, 
St. Louis, MO). Antibodies were used according to manufacturer 
instructions. 

Oligonucleotides

We designed two oligonucleotides with 51 phosphate groups 
and phosphodiester linkages: T-oligo, which is homologous to the 
31 overhang sequence (pGTTAGGGTTAG), and c-oligo, which is a 
complementary sequence (pCTAACCCTAAC) (Midland Certified 
Reagent Co., Midland, TX, USA). 

Evaluation of cell death

All melanoma cell lines were grown in MEM with 5% FBS and 
treated with 40 µM of oligonucleotides T-oligo or c-oligo or an equal 
volume of water (diluent) for 72 hours. Cells were then stained with 
propidium iodide and analyzed by Becton Dickinson FACS Scan and 
Cell Quest software. Percentage cell death was evaluated by determining 
the sub G0/G1 DNA content. 

Intracellular uptake of T-oligo by melanoma cells 

MM-AN and RPM-EP melanoma cells were treated with either 
diluent (water) or 40 Μm of fluorescein isothiocyanate (FITC) labeled 
T-oligo for 4 hours, and then fixed with 4% paraformaldehyde in 
PBS (Electron Microscopy Sciences, Hatfield, PA) for 15 minutes. 
Fluorescence was measured on Becton Dickinson FACS Scan and 
analyzed by Cell Quest software. For confocal microscopy analysis, 
melanoma cells were plated on

Glass chamber slides (Lab-Tek, Naperville, IL) and treated for 4 
hours with FITC-labeled T-oligo (Midland Certified Reagent Co., 
Midland, TX, USA). The nucleus was stained as described earlier [22]. 
Melanoma cells were fixed in 4% paraformaldehyde in PBS, mounted 
with Slow fade reagent (Molecular Probes, Eugene, OR), and stored at 
4°C in the dark. T-oligo uptake by cells was visualized with a confocal 
microscope (Olympus IX81).

Western blotting analysis

MM-AN melanoma cells were treated with 40 μM of either 
T-oligo, c-oligo or an equal volume of diluent (water) for 48-72 
hours, as described above. Cells were lysed as described previously 
[23,24] in buffer containing 20 mM Tris (pH, 8.0), 150 mM NaCl, 
10% glycerol, 1% NP-40, 0.42% NaF, 1 mM phenylmethylsulfonyl 

fluoride, 1 mM sodium orthovanadate and 10 mM protease inhibitor 
cocktail (Sigma-Aldrich, St. Louis, MO). Cell lysates were separated 
by SDS-PAGE electrophoresis under reducing conditions and then 
transferred to immobilization membranes (Bio-Rad Laboratories, 
Hercules, CA). An anti-β-actin antibody was used as a loading control. 
The membranes were then probed with antibodies against γH2AX, 
E2F1, p73, tyrosinase and TRP-1, and blots were visualized using an 
enhanced chemiluminescence kit (Thermo Fisher Scientific, Rockford, 
IL). Densitometry of western blot bands was performed using NIH 
Image J software.

Immunofluorescence staining

10,000 MM-AN cells were plated on chamber slides and allowed to 
adhere for 24 hours. Cells were then treated with 40 μM of T-oligo for 
48 hours, fixed with 4% paraformaldehyde, and immunofluorescence 
was performed with anti-γH2AX (pSer139) antibody and FITC labeled 
secondary antibody, using anti-rabbit DyLight 488 secondary antibody 
(Green, Thermo Fisher Scientific) and 4′,6-diamidino-2-phenylindole 
(DAPI, blue) for nuclear staining (Vector Shield, vector labs, 
Burlingame, CA), and analyzed on a confocal microscope (Olympus 
IX81) [25].

Animal experiment

Two million MM-AN melanoma cells were injected into the flank 
of SCID mice to produce subcutaneous tumors, which were allowed 
to develop for one week. When tumors were visible, mice were 
treated with T-oligo or c-oligo (10 mice in each group), which were 
delivered by Alzet pumps (DURECT Corporation, Cuperino, CA) 
surgically implanted into the animal near the tumor site. Mice were 
treated with 420 µg of T-oligo delivered daily via continuous infusion 
for week. Following the final dose, mice were left untreated for two 
weeks. The mice were then euthanized via CO2 inhalation and tumor 
sizes were measured with digital callipers, and their volumes were 
determined. Tumors were fixed using 4% formalin and stained with 
H and E. To identify the melanoma tumors, immunohistochemistry 
was performed as described earlier [2,24]. This protocol was approved 
by the Institutional Animal Care and Use Committee (IACUC) of the 
University of Chicago and animal treatments were done according to 
institution approved protocols. Care was taken to ensure animals did 
not suffer discomfort, distress or pain. 

Immunostaining of differentiation markers in tumors 

Immunostaining for differentiation markers MART-1, TRP-1, 
and gp-100 was performed as described previously [24]. Following 
resection of tumors from the SCID mice, samples were formalin fixed 
paraffin-embedded (FFPE) and sectioned. FFPE sections 5 incubated 
with non-immune rabbit serum served as negative controls. Tumors 
were subsequently graded by two investigators on a 0-3 scale [26].

Results
T-oligo induced cell death in melanoma

Cell Lines Induction of cell death was studied in six melanoma 
cell lines: MM-AN, MU, PM-WK, MM-RU, MM-MC and RPM-EP. 
Five of the six cell lines were found to undergo apoptosis in response 
to T-oligo (Table 1). Cell death rates ranged from 11.8% to 33.24% at 
72 hours in T-oligo responsive cell lines, with MU and MM-AN cells 
showing the maximum response. RPM-EP was the only unresponsive 
cell line, which was unresponsive. Our earlier studies indicate that 
T-oligo does not induce cell death in normal human melanocytes, with 



Citation: Bertram C, Wojdyla L, Uppada S, Shearrow C, Botting G, et al. (2013) Therapeutic Potential of T-oligo and its Mechanism of Action. 
Metabolomics 3: 125. doi:10.4172/2153-0769.1000125

Page 3 of 7

Volume 3 • Issue 3 • 1000125
Metabolomics
ISSN: 2153-0769 JOM an open access journal 

cell death at 72 hours ranging between 1-2% [2] in both T-oligo and 
control groups. These results indicate that T-oligo induces cell death 
specifically in melanoma, and not their normal counterpart. 

Uptake of T-oligo 

To study the uptake of T-oligo, the responsive MM-AN cells and 
the unresponsive RPMEP cells were both treated with diluent or 50 
µM of T-oligo labeled with FITC for 4 hours and then analyzed by 
FACS scan. MM-AN and RPM-EP cells treated with T-oligo showed 
uptake of T-oligo into the cell (Figure 1A), indicating that T-oligo is 
able to enter the cells freely. These results indicate that the inability to 
uptake T-oligo was not the cause of unresponsiveness in RPM-EP cells. 
Uptake of FITC labeled T-oligo in MM-AN cells was also confirmed 
by confocal microscopy and nuclear localization of T-oligo was clearly 
seen (Figure 1B). Similar results were observed in RPM-EP cells. 

Effect of T-oligo on γH2AX 

DNA damage characteristically leads to phosphorylation of ATM 
on Ser1981, which subsequently phosphorylates H2AX on Ser139. This 
phosphorylation leads to modification of chromatin structure, and is 
thought to be a critical step in propagating DDRs and activating cell-
cycle checkpoints [27]. Therefore, T-oligo’s effect on phosphorylation 
of H2AX was also studied. The induction of γH2AX foci were also 
observed on a confocal microscope in MM-AN melanoma cells (Figure 
1C). No γH2AX foci were seen after treatment with diluent or c-oligo. 
As seen by western blotting, treatment of MM-AN melanoma cells 
with 40 µM T-oligo resulted in a 9-20 fold increase of phosphorylation 
of H2AX at 48-72 hours (Figure 1D), indicating that T-oligo induces a 
DNA damage signal.

T-oligo mediated DDRs were not induced in RPM-EP 
melanoma cells 

DDRs induced by T-oligo are believed to be mediated through 
p53/p73 and E2F1 [2,9]. We have previously reported that cells which 
lack detectable levels of p53 have increased expression of p73 and E2F1 
preceding T-oligo induced apoptosis [2]. Furthermore, it was shown 
that siRNA knockdown of p73 in p53 null melanoma cells resulted in a 
50% reduction in apoptosis [5], suggesting a significant role for p73 in 
T270 oligo induced DDRs. In the present study, p73 null RPM-EP cells 
did not exhibit significant levels of cell death or apoptosis after treatment 
with T-oligo (Figure 2A and 2B). As expected, expression of E2F1 was 
not upregulated nor was p73 detectable (Figure 3A). Additionally, we 
explored modulation of melanocyte differentiation-specific antigens in 
response to T-oligo treatment. Progressive melanoma often exhibits 
a loss of melanocyte differentiation antigens, which are the targets 
of immunotherapy-mediated treatments of melanoma [28]. The 

expression of these antigens is associated with decreased tumorigenicity 
and slower cell proliferation [22,29,30]. Previous reports by our group 
have demonstrated up regulation of tyrosinase and TRP-1 in several 
melanoma cell lines after T-oligo treatment [2,9]. Furthermore, an 
increasing number of reports suggest that these TAAs are regulated 
by p53 and p73 [27,31]. In accordance with this, we demonstrated 
that RPM-EP cells failed to induce upregulation of either TRP-1 or 
tyrosinase differentiation markers, following T-oligo treatment (Figure 
3B). This evidence shows for the first time the requirement of p73 for 
expression of differentiation antigens and DDRs induced by T-oligo in 
a p73 null cell line. These data further substantiate the importance of 
the p53 protein family in mediating T-oligo antitumor effects.

Effect of T-oligo on tumors in SCID mice

T-oligo was delivered systemically in SCID mice using Alzet 
pumps and its effects on pre-existing tumors were studied. T-oligo 
delivered by Alzet pumps inhibited the growth of melanoma tumors 
in SCID mice by 98% (Figure 4A and 4B), and 60% of treated mice 
had clinically no detectable tumors as seen by H and E staining in fixed 
tumors (Figure 4C). Tumors were identified and validated as human 
melanoma with a pan melanoma cocktail, which stains for gp-100, 
MART-1 and tyrosinase which are all important melanoma markers 
(Figure 4C). 

Up regulation of differentiation markers by T-oligo 

Treatment with T-oligo displayed a 2.5 fold increase in intensity 
of staining for MART-1 expression, a 3.4 fold increase in intensity 
of TRP-1, and a 2.0 fold increase in intensity of gp-100 in MM-AN 
melanoma tumors (Figure 4D). These data demonstrate that T-oligo 
induces expression of differentiation markers in vivo.

Discussion
The incidence of melanoma has increased by approximately 

2.8% annually since 1981 in the United States [32]. Despite extensive 
ongoing research, there are no effective therapeutic treatment options 
for melanoma. Moreover, the 10-year survival rate for patients with 
metastatic melanoma is less than 10% [33]. Therefore, it is critical that 
better therapeutics with improved efficacy are developed for melanoma. 
Although several studies have demonstrated T-oligo’s high therapeutic 
potential in multiple malignant cell lines, it’s mechanism of action is not 
fully understood. We and others suggest that its effects are modulated 
through a combination of signaling pathways which may differ across 
cell types. Several proteins, including ATM/p95/Nbs1, chk2, p53/p73 
and cdk2, are considered substantial players in T-oligo’s signaling 
pathways [2,9,34,35]. In the present study, we present additional 
evidence that p73 has an essential role in mediating DDRs induced by 
T-oligo in melanoma. Additionally, we investigated the therapeutic 
efficacy of T-oligo in vitro and in vivo studies, and demonstrate nuclear 
uptake of T-oligo, the induction of cell death in melanoma cell lines 
and the reduction of malignant melanoma tumors in mice after 
T-oligo treatment. Genomic integrity and transmission are regulated 
by high fidelity mechanisms [36-38]. When these mechanisms fail [39], 
DDRs are activated. The ATM gene plays a major role in the proper 
functioning of these DDRs [39] and phosphorylates several protein 
targets, such as checkpoint kinase (Chk2) and p53 [40]. It has been 
shown that T-oligo treatment results in DDRs which are mediated by 
ATM kinase and its effector proteins [6]. In contrast, other studies 
suggest that T-oligo induced DDRs are modulated independently of 
ATM/p53 in several cell lines [34]. However, we propose that in cells 
lacking detectable quantities of p53, T-oligo-induced DDRs progress 

Percentage of cell death induced by T-oligo in melanoma cells
Cell line Diluent T-oligo C-oligo

MM 2.09 ± 0.19 37.73 ± 2.30 2.11 ± 0.45
MU 4.03 ± 1.02 33.24 ± 0.44 6.70 ± 0.50

PM-WK 2.89 ± 0.10 14.96 ± 0.30 3.45 ± 0.63
MM-RU 4.04 ± 0.37 16.08 ± 1.72 7.80 ± 0.01
MM-MC 2.04 ± 0.26 11.80 ± 0.99 2.15 ± 0.07
RRM-EP 1.25 ± 0.40 1.40 ± 0.26 1.61 ± 0.18

Table 1: Percentage of cell death in melanoma cell lines treated with T-oligo for 
72hou rs. Six different melanoma cell lines were treated with 40µM of T-oligo. The 
percentage of cell death was evaluated after FACS analysis by determining the 
sub-G0/G1 DNA content after propidium iodide staining. It was found that five out of 
six melanoma cell lines showed induction of cell death after treatment with T-oligo. 
RPM-EP cells did not exhibit cell death after treatment with T-oligo.
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Figure 1: Uptake of T-oligo and its effects on MM-AN melanoma cells. MM-AN cells were treated with either diluent or 50 µM of FITC labeled T-oligo for 4hrs and 
uptake of T-oligo was studied. A. FACS analysis demonstrated the uptake of T-oligo by MM-AN cells and RPM–EP cells. B. Confocal microscopy of MM-AN cells 
showing nuclear localization of FITC-T-oligo. The nucleus was stained with propidium iodide and colocalization of the two fluorescent molecules was seen as a yellow 
color. C. MM-AN melanoma cells were treated with T-oligo or c-oligo for 48 hours, fixed with paraformaldehyde, and immunostaining was performed with a YH2AX 
monoclonal antibody and a secondary antibody linked with FITC. YH2AX foci were seen mainly in cells treated with T-oligo. Very few foci could be detected in cells 
treated with c-oligo DMM-AN melanoma cells were treated with T-oligo, c-oligo, or an equal volume of diluent for the indicated times and samples were collected for 
western blotting for detecting ?H2AX (Phospho Ser-139 H2AX). YH2AX was upregulated at 48-72 hours after treatment with T-oligo.

Figure 2: Unresponsiveness of RPM-EP cells to T-oligo treatment. A. FACS analysis was carried out using propidium iodide staining after treatment with 40 µM of 
either T-oligo or c-oligo and diluent for 96 hours. Percentage cell death was evaluated by determining the sub-G0/G1 DNA content. No difference in cell death was 
observed between the treatment conditions. B. RPM-EP cells were treated with 40 µM of either T- oligo or c-oligo and diluent for 72 hours and TUNEL assay was 
performed. Since no shift in peaks was seen after treatment, there was no induction of apoptosis after T-oligo or c-oligo treatment.
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Figure 3: RPM-EP cells were unresponsive to T-oligo treatment. RPM-EP cells were treated with 40 µM of either diluent, T-oligo or c-oligo for 48 and 72 hours. 
Western blot analysis was performed to evaluate the expression of E2F1, p73, tyrosinase and TRP-1. A. No change in expression of E2F1 was observed and p73 was 
not detected. B. No change in expression of tyrosinase was observed and TRP-1 was not detected. β-actin was used as the loading control.

 
Figure 4: Reduction of tumor size and upregulation of differentiation markers with T-oligo treatment: One week after injection of MM-AN cells, SCID mice with visible 
melanoma tumors on the flanks were treated with 420 µg of T-oligo or c- oligo daily for one week and then left untreated for two weeks. A. T-oligo treated mice showed 
very small residual tumors in comparison to animals treated with c-oligo. B. Animals (n=10) treated with T-oligo showed a 98% reduction in tumor volume as compared 
to c-oligo. The differences in tumor size in these studies were statistically significant (p<0.0001) C. H and E staining of animals treated with T-oligo and c-oligo showed 
that animals treated with c-oligo had large tumors. Tumors were absent in 60% of animals treated with T-oligo. Melanoma tumors were identified by their positive 
staining with the pan melanoma cocktail. D. Sections from FFPE tumors from SCID mice were prepared and immunostaining procedures were performed. FFPE 
sections incubated with non-immune rabbit serum served as negative controls. T-oligo treatment increased expression of MART-1, TRP-1 and gp-100.
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through its homologue p73. In addition, histone H2AX is one of the 
important targets phosphorylated by ATM [41]. These investigations 
and our studies suggest that T-oligo treatment induces activation of the 
ATM pathway which leads to the phosphorylation of histone H2AX, 
resulting in DNA fragmentation and cell death. To further verify the 
importance of p73 in T-oligo’s signaling mechanism, we investigated 
its role in RPM-EP cells which lack detectable levels of p53 or p73. 
Treatment with T-oligo did not demonstrate any detectable DDRs, 
including induction of cell death or apoptosis and no expression of 
p73 or upregulation of E2F1 expression. Furthermore, there was no up 
regulation of TAA antigens, TRP-1 or tyrosinase. Although previous 
reports have shown similar results in MM-AN melanoma cells treated 
with p73 siRNA, apoptosis was only inhibited by 50% in these cells 
[5]. This may be attributed to incomplete knockdown of p73 following 
siRNA treatment. The results presented in this study are novel, since 
RPM-EP are known to have no detectable expression of p53/p73, 
providing evidence of a critical role for p53/p73 in the induction of 
T-oligo mediated DDRs.

Alzet pumps were successfully used as a novel delivery system for 
T-oligo. Administration via the Alzet pumps allows for continuous 
infusions of T-oligo, maintaining concentrations within therapeutic 
levels for the duration of the experiment [42]. Our results demonstrate 
a 98% reduction in tumor volume, thus increasing T-oligo’s efficacy, 
as compared to alternate routes of delivery, as shown by us in previous 
studies [2]. This novel route of delivery broadens our understanding 
of T-oligo’s potential clinical efficacy. Our studies demonstrate that 
T-oligo treatment up regulates expression of melanoma differentiation 
markers/TAAs gp-100, TRP-1 and MART-1 [2,43]. gp-100 has been 
shown to be highly specific for metastatic melanoma in lymph nodes 
[44], while MART- 1 has been reported to be specific for both primary 
and metastatic melanoma [44]. TRP-1 is a 75-kDa melanosomal 
glycoprotein (gp 75), which is most abundant in melanocytes and 
melanoma [45]. TRP-1 has been shown to be involved in melanogenesis, 
in the prevention of inhibition of melanocytic cell death [46], and 
is also shown to be highly expressed in malignant melanomas [47]. 
Pioneering research by Rosenberg et al. [48] and Boon [49] research 
groups indicated cytotoxic T cells target self, non-mutated proteins 
like MART-1, gp-100 and TRP-1, which are common to both normal 
melanocytes as well as melanoma. It is suggested that the over 
expression of TAAs in melanoma cells elicits immune responses by 
low-avidity TAA-specific T cells [50-52]. Interestingly, clinical trials 
with TAAs have been shown to be promising. In a phase 3 clinical trial, 
it has been shown that a vaccine against the gp-100 antigens increases 
progression free survival in patients with advanced melanoma [53]. In 
a phase 1/2 clinical trial with AdVMART1-transduced dendritic cell 
vaccine, it was shown to be safe and immunogenic in patients with 
metastatic melanoma [54]. Further, it has been shown that epitopes of 
TRP-1 antigen induced long lasting antitumor immune responses [55]. 
In the present study, we suggest that T-oligo stimulates the antitumor 
immune response by increasing the expression of TAAs, which play 
a pivotal role in inhibiting proliferation in melanoma. In summary, 
our results suggest treatment with T-oligo increases phosphorylation 
of histone H2AX, which results in apoptosis of cancer cells and up 
regulation of tumor associated antigens in vivo. These responses then 
lead to antitumor immune responses against melanoma tumors, thus 
preventing the growth and progression of melanoma. Furthermore, 
we demonstrate the requirement of p73 in T-oligo induced DDRs. 
These results indicate that T-oligo could be a potential therapeutic for 
melanoma. Further studies are being carried out in our laboratory to 
improve the delivery and stability of T-oligo as a targeted nano particle, 

which could enhance the efficacy of T-oligo as a therapeutic agent in 
melanoma and other cancers.
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