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In recent years, to screen the compounds revealing affinity to 
the proteins, the methods based on the registration of the change in 
thermal stability of proteins in the presence of the compounds being 
tested are widely used. In such experiments thermal denaturation is 
studied in the regime of heating of the protein solution at a constant 
rate. To control unfolding of the protein molecules, different physical 
methods are used, such as Differential Scanning Calorimetry (DSC) 
[1-9], intrinsic fluorescence [7,9,10-13], extrinsic fluorescence based 
on the measurements of the emission from extrinsic fluorescent 
dyes (8-anilino-1-napthalenesulfonic acid, 4,4′-bis(1-anilino-8-
naphthalenesulfonic acid), SYPRO Orange, Nile red) [14-27] and 
circular dichroism [10,28-30]. When denaturation of the protein 
is accompanied by irreversible aggregation of denatured protein 
molecules, the denaturation process can be followed by monitoring the 
increase in the light scattering of the protein solution [10,20,31-36] or 
the increase in apparent absorbance in the visible region [7,11,30]. The 
screening procedures using these physical methods can be automatized 
[3,10,14,18,20,21,28,29,32,37-39] resulting in acceleration of searching 
the compounds which are of practical importance, for example, 
compounds that reveal affinity to protein target and act as potential 
pharmaceutical products.

The screening systems based on the registration of the increment 
of the light scattering intensity on heating of the protein solution at a 
constant rate are of special interest. It is evident that such test systems 
are applicable for searching the compounds specifically interacting 
with the proteins and for the rough estimate of the stability of the 
complexes protein–agent under test. Many investigators have restricted 
themselves to such an aspect of using of the screening systems. However 
one should take into account that the agents under study may affect not 
only the stage of protein denaturation but also the stage of aggregation 
of denatured molecules. In such cases the interpretation of the obtained 
results becomes complicated and the additional experiments should be 
performed to elucidate what stage of the general process of aggregation 
(stage denaturation or stage of aggregation) is affected by the agent 
under test. It is significant that, if for the screening systems, which are 
based on registration of excess heat capacity, fluorescence or ellipticity 
of the protein, aggregation is a factor complicating the interpretation 
of the results, for the screening systems based on registration of the 
light scattering intensity the investigator will have a chance of testing 
compounds that exert its action exclusively on the stage of protein 
aggregation. The case in point is an array of protein chaperones and 
low-molecular-weight chemical chaperones.

First of all, consider the principles of analysis of the dependences of 
the light scattering intensity on temperature for the screening systems 
in which the protein undergoes denaturation on heating at a constant 
rate. When studying aggregation of interleukin-1β and its mutant 
forms, Wetzel with coworkers [40,41] used aggregation temperature 
(Tagg) to characterize the dependences of the light scattering intensity 
(I) on temperature (T). Parameter Tagg was defined as a length cut off on 
the abscissa axis by continuation of the linear part of the dependence
of I on T (Figure 1A). The advantage of this approach is that only one
parameter is used for characterization of the propensity of the protein
to aggregation, namely parameter Tagg. There is a correlation between

parameter Tagg characterizing thermal stability of sequence variants of 
interleukin-1β and the 
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stability (the difference between the free energies of unfolding for 
mutant and for the wild type) for each sequence variant, as determined 
in reversible unfolding experiments in guanidine hydrochloride 
monitoring the fluorescence of the single tryptophan at position 120.

The dependence of the light scattering intensity (I) on temperature 
(T) has a sigmoid shape. At rather high temperatures the light
scattering intensity reaches a limiting value (Ilim). To characterize
thermostability of a protein, Senisterra and coworkers [31,33,35]
used the temperature (Tagg) corresponding to the middle point of the
transition, i.e., a temperature at which I = Ilim/2 (Figure 1B). Parameters 
Ilim and Tagg are determined by fitting of the experimental dependence
of I on temperature with the following empiric equation, analogous to
the Boltzmann equation:
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where B is a constant. According to Senisterra and coworkers parameter 
Tagg may be considered as a measure of protein thermostability and the 
change in the Tagg value in the presence of a ligand characterizes the effect 
of the latter on protein thermostability. To substantiate this conclusion, 
the authors used DSC, which is a source of direct information on the 
protein resistance to high-temperature exposure. The correlation 
between the Tagg value and the position of the maximum on the DSC 
profiles (Tmax) was demonstrated [31,33].

Vedadi and coauthors [20] applied both fluorescence- and light-
scattering-based approaches to measure the thermal stability of 221 
recombinant proteins from humans and human parasites in the 
presence and absence of a range of chemicals. Purified proteins were 
subjected to gradually increasing temperature in both methods, 
and the temperature shift between the melting temperature (Tm for 
fluorescence measurements or Tagg for light-scattering measurements) 
in the presence and absence of a bound ligand was measured. The 
extent of the temperature shift is believed to be proportional to the 
affinity of the ligand for a given protein. The fluorescence and light-
scattering approaches were applied to recombinant proteins in two 
experimental formats. In the first, the proteins were screened against 
a set of “generic” solution conditions designed to identify stabilizing 
conditions comprising salts, pH, and simple additives, such as 
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nucleotides. In the second, which was targeted to proteins for which 
the activity was known, proteins were screened against a library of 
small molecules selected to be likely candidates for binding (e.g., 
protein kinases were screened against a library of known inhibitors 
from the patent literature). The aim of the work was to determine the 
frequency with which more optimal solution conditions and small-
molecule inhibitors could be identified by each method (fluorescence 
and light scattering) and determine the frequency with which these 
improved conditions were able to promote protein purification and/or 
crystallization. Of the 40 proteins for which both a Tm and a Tagg could 
be measured, the difference between Tagg and Tm varied depending 
on the protein; for 16 proteins Tagg was lower than Tm, whereas for 24 
proteins Tagg was higher than Tm. It is possible that aggregation kinetics 
or a stabilization effect by the dye (SYPRO orange) account for these 
differences.

When studying thermal aggregation of human interleukin-1 
receptor antagonist (IL-1ra), Raibekas [32] also used the midpoint 
aggregation curve-associated temperature (Tagg) to characterize the 
propensity of the protein to aggregation. The lower the Tagg value, the 
higher is the propensity of IL-1ra to aggregation. Using this approach, 
the acceleration of aggregation of IL-1ra with increasing protein 
concentration was demonstrated.

It is evident that the accuracy of determining parameter Tagg is 
connected with the reliability of the estimation of parameter Ilim. 

When trying to estimate parameter Ilim, we should take into account 
that the “true” limiting level of the light scattering intensity may not be 
reached because of precipitation of the large-sized aggregates formed 
at high temperatures. Such a precipitation results in the decrease in 
the light scattering intensity, and the real experimental dependence of 
I on temperature looks like a curve passing through a maximum. The 
maximum value of the light scattering intensity may be lower than the 
Ilim value calculated from Eq. (1). Besides, the correlation between the 
increment of the light scattering intensity and the degree of protein 
denaturation should be controlled not only by checking the correlation 
between parameters Tagg and Tm, but by strict analysis of the relationship 
between turbidimetric and calorimetric data, the latter supplying direct 
information on the degree of protein denaturation.

To avoid the uncertainty in the estimation of parameter Ilim, Eronina 
et al. [36] proposed to analyze the initial parts of the dependences of I 
on temperature using the following empiric equation:

2
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In this equation T0 is the initial temperature of aggregation, i.e., 
the temperature at which the light scattering intensity begins to 
increase (Figure 1C), and Kagg is a constant with the dimension of 
(counts/s)⋅(°C)−2. To demonstrate the applicability of this equation, 
the data on thermal aggregation of glycogen phosphorylase b (EC 
2.4.1.1), glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) 
and creatine kinase (EC 2.7.3.2) from rabbit skeletal muscles and 
bovine liver glutamate dehydrogenase (EC 1.4.1.3) were used [36]. The 
measurements of the hydrodynamic radius of the protein aggregates 
showed that the initial temperature of aggregation (T0) indicates the 
moment of origination of the start aggregates. The hydrodynamic 
radius of the start aggregates (Rh,0) is several tens of nanometers. The 
analysis of the data obtained by Golub et al. [42] shows that analogous 
situation takes place for thermal aggregation of aminotransferase 
(EC 2.6.1.1) from pig heart mitochondria (T0 = 54.6 ± 0.5 °C and Rh,0 
= 60 ± 1 nm). As demonstrated in [36], the T0 value decreases with 
increasing the protein concentration whereas parameter Kagg, which 
can be considered as a measure of the aggregation rate, increases as the 
protein concentration increases.

Aggregation systems under discussion may be used for testing the 
compounds affecting protein stability as a result of direct binding to the 
native protein molecule (for example, substrates and modifiers of the 
enzymes). Besides, test systems based on thermal aggregation of model 
proteins in the regime of heating at a constant rate allow the anti-
aggregation properties of the compounds possessing chaperone-like 
activity (for example, small heat shock proteins) to be characterized 
[43-49]. Strictly speaking, if we want to select agents affecting 
exclusively the stage of denaturation, we should demonstrate that these 
agents have no effect on the stage of aggregation. To solve this problem, 
the investigator should have at his disposal the screening systems 
which allow the effect of the agents on the stage of protein aggregation 
to be tested. In test systems of such a type the preliminary denatured 
protein should be used. For example, test systems based on aggregation 
of ultraviolet-irradiated proteins are suitable to characterize the direct 
action of the agents under study on the stage of aggregation [50-53]. 
DSC was used in these experiments to prove protein denaturation 
under UV light.

In conclusion, it should be emphasized that the approaches 
discussed here have the potential to become an effective screening 
tool for ligands and buffer excipients influencing protein stability 

Figure 1: Analysis of the dependences of the light scattering intensity (I) 
on temperature (T) for thermal aggregation of proteins registered in the 
regime of heating of the protein solution at a constant rate. (A) To determine 
parameter Tagg, the linear part of the dependence of I on T is extended until 
it intersects with the abscissa axis. (B) The application of equation (1) for the 
determination of parameter Tagg. (C) The application of equation (2) for the 
determination of parameter T0.
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