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Introduction
Superparamagnetic iron oxide nanoparticles (SPIONs) with 

tailored surface chemistry have emerged as a promising nanomaterial 
for numerous biomedical applications [1-6] including MRI [7-10], 
tissue repair [11], immunoassay [12,13], detoxification of biological 
fluids [11], hyperthermia [14], drug delivery [15], and cell manipulation 
[16-18]. In general, to be most effective, the nanoparticles must have 
high magnetization values. To be nontoxic and biocompatible, they 
must be small and have a narrow size distribution [19-22]. Both 
magnetization and size are strongly determined by the method of 
nanoparticle synthesis, and many protocols have been explored such 
as co-precipitation [23], sol–gel [24], thermal decomposition [25], 
micro emulsion [26], and hydrothermal methods [27,28]. However, 
in contrast to these well-established approaches, the use of microwave 
irradiation represents a relatively new strategy for nanoparticle 
synthesis and surface functionalization [29-32].

Microwave-assisted chemistry boasts competitive advantages 
over conventional methods and is becoming increasingly popular in 
all areas of synthesis [33]. This unique technology allows reactions to 
proceed in very short times, and often with higher selectivity, yield, and 
energy efficiency than methods that rely on conventional heating [34]. 
Advantages of microwave-assisted nanomaterials synthesis have been 
demonstrated with polymer microspheres [35], metallic nanoparticles 
[36], metal oxides [37], and quantum-dots [38]. The application of the 
microwave technique to iron oxide nanoparticle fabrication is due, and, 
in fact, several microwave-assisted syntheses of iron oxide nanoparticles 
have been reported; however, in these preliminary cases, the protocols 
have either required toxic additives [39], or the nanoparticles that were 
produced lacked monodispersity [39], or required a phase transfer step 
to confer water solubility [40]. 

The polyol synthesis (which is also known as the thermal 
decomposition method) of metal oxide nanoparticles is a forced 
hydrolysis of transition metal salts [40-43]. Polyols are used as solvents 
because (i) they can act as reducing polar solvents and (ii) their 
high boiling points allow for the solubilization and reduction of a 
large number of metal salts. For example, decomposition of the iron 
oxide precursor, iron (III) acetyl acetonate (Fe(acac)3) in triethylene 
glycol (TREG) gives access to high quality, superparamagnetic, and 

monodisperse iron oxide nanoparticles [44-46]. TREG solvent has 
been widely used as a green solvent for various organic syntheses due 
to its low toxicity [47]. However, despite the fact that TREG itself is 
practical and environmentally benign, many procedures that rely on it 
as a solvent also involve severe reaction conditions including elevated 
temperatures (up to 200°C), long reaction times (some more than 10 
hours), and/or uncommon equipment such as a sealed autoclave [47].

In this paper, we describe a fast, convenient, and green, synthetic 
route to ultra-small superparamagnetic iron oxide nanoparticles (2-4 
nm) that combines the advantages of both the microwave chemistry 
and the polyol synthesis. We also provide a comparison between 
nanoparticles prepared by this combined technique and those produced 
by a method involving conventional thermal decomposition. Also, we 
note that our microwave-assisted method provides nanoparticles that 
are stable, and easily dispersed in water and that functionalization of 
the surface of these nanoparticles with alendronate (Scheme 1), an 
antitumor molecule, was successful, making them a potential material 
for drug delivery and release.

Materials and Methods
Tri(ethylene glycol) (TREG, 99%), iron(III) acetylacetonate 

(Fe(acac)3, 97%), and ethyl acetate were purchased from Sigma-Aldrich 
and used as received.

Synthesis of (4-Amino-1-hydroxy-1-phosphonobutyl)
phosphonic acid (Alendronate)

Alendronate was synthesized according to the general procedure 
[48] for linear aliphatic BPs and characterized by 1H and 31P NMR.
4-aminobutyric acid (150 mmol) and phosphorous acid (150 mmol)
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Abstract
A fast, efficient and green microwave-assisted synthesis of ultra-small, superparamagnetic iron oxide 

nanoparticles is reported. By controlling the temperature and heating mode of a polyol reduction using 
triethylene glycol (TREG) as a green, high-boiling solvent, ultra-small nanoparticles (2-4 nm) exhibiting robust 
superparamagnetic behavior were obtained. The sizes of the nanoparticles were determined by TEM and DLS 
measurements. Using a ligand exchange process, the TREG molecules on the surface of the smallest nanoparticles 
(2 nm) were successfully replaced with Alendronate, an anti-cancer drug molecule, effectively transforming the 
nanoparticles into a potential theranostic agent.
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were introduced in a three-necked round-bottom flask under inert 
atmosphere followed by 30 ml of methane sulfonic acid. After heating at 
65°C for 1 h, phosphorus trichloride was added slowly and the reaction 
was allowed to proceed overnight at 65°C. The resulting yellow viscous 
reaction mixture was cooled to room temperature, and quenched with 
500 ml of ice-cold water. The pH was adjusted to 4.3 with an aqueous 
NaOH solution (0.5 M), and the obtained white precipitate was 
collected by filtration. This solid was washed five times with a mixture 
of methanol/water (95:5) and freeze-dried to finally obtain alendronate 
(82%). RMN 31P {1H} (80.9 MHz, H3PO4/D2O): 18.47. RMN 1H (500 
MHz, D2O): 3.046 (m, 2H), 2.017 (m, 4H). I.R.: 1540, 1172, 1052 cm−1.

Synthesis of iron oxide nanoparticles 

Water-soluble iron oxide nanoparticles were prepared by the 
thermal decomposition process. Fe(acac)3 (10−3 M) was dissolved in 5 
ml of hydrophilic TREG media magnetically stirred without a flow of 
argon and then quickly heated to the desired temperature. The solution 
was cooled with an ice bath. The nanoparticles were precipitated by 
addition of 10 ml of ethyl acetate and then isolated by centrifugation 
at 4000 rpm for 20 min. The obtained precipitate was re-dispersed in 
water and further precipitated, followed by centrifugation. This washing 
procedure was repeated 5 times. The washed particles were dispersed 
in acidic water to obtain a stable aqueous ferrofluid suspension. The 
temperature of the reaction was varied in order to study its effect on the 
nanoparticles size and magnetism.

Synthetic details of the two methods used for the fabrication of iron 
oxide nanoparticle, (conventional heating and microwave synthesis), 
are detailed below.

Synthesis carried out in conventional heating 

The reaction mixture was first heated to a desired temperature and 
then heated for a specified time. After heating, the resulting precipitate 
was cleaned by following the procedure described above and re-
dispersed in acidic water (HCl, 10−2 M) to form a clear brown colloidal 
dispersion. 

Synthesis realized under microwaves heating 

The homogeneous dispersion of Fe(acac)3 in TREG was transferred 
into a 10 ml vessel with a crimp cap, heated by microwave irradiation 
of 2.45 GHz (CEM Discovery, CEM Inc. USA), and the other reaction 
parameters were modulated, applying a maximum power of 300 W. 

The power was automatically adjusted to heat the sample to the set 
reaction parameters (temperature and time). The precipitate obtained 
was separated by adding brine (10 mL), followed by centrifugation at 
4000 rpm for 20 min. The supernatant from this first centrifugation was 
discharged and the precipitate was dispersed in 10 mL of ethyl acetate 
and centrifuged again at 4000 rpm for 20 min. The precipitate was re-
dispersed in acidic water (HCl, 10−2 M) to form a clear orange colloidal 
dispersion. 

Nanoparticle surface functionalization with alendronate

The nanoparticles were precipitated at pH 6 and cleaned to remove 
excess TREG. This procedure was repeated 5 times. Alendronate (40 
mg) was solubilized in 1 ml of water and the solution was added drop-
wise to the cleaned nanoparticles, and the pH was adjusted to 2. The 
reaction mixture was stirred for 1 hour at room temperature. The 
Alendronate coated particles were cleaned by repeated precipitations 
at pH=2.

Nanoparticle characterization 

Size and morphology of the nanoparticles were determined by 
transmission electron microscopy (TEM, FEI CM10 Microscope) 
and dynamic light scattering (DLS) (Zetasizer Nano-ZS, Malvern 
Instruments). Each sample was analyzed at room temperature with 
diluted ferrofluid ([Fe]=10−3 mol.L−1) at pH=2. Surface coating 
of the nanoparticles were characterized by Fourier transform 
infrared spectroscopy (FTIR, Varian 3100). Magnetic properties of 
the nanoparticles were studied using a MIAtek reader (Magnetic 
Immunoassays Technology), which measured a signal proportional 
to the third derivative of magnetization at zero magnetic field. The 
detection method was based on the nonlinear magnetization of SPION. 
An alternating magnetic field was applied to the sample at two different 
frequencies f1=100 kHz and f2=100 Hz having amplitudes of 10 and 
200 Oe, respectively. The response of the sample was measured at 
combinatorial frequencies, e.g., f=f1 ± 2f2 [49]. The weight percentage 
of Alendronate molecules on the surface of the nanoparticles was 
determined by thermogravimetric analysis (TGA). Solid samples 
(10 mg) under N2(g) flux were characterized with a SDT Q600 TA 
Instruments analyzer at a heating rate of 5°C/min over a temperature 
range of 35-700°C. 

Results and Discussion
Nanoparticle size and shape

The influence of reaction temperature and heating mode on 
nanoparticle size was studied. Figures 1A and 1B show the TEM images 
of the nanoparticles obtained after reactions (15 minutes each) that 
were carried out at different temperatures and with different heating 
methods (conventional or microwave). 

Under conventional heating, nanoparticles having an average 
diameter of 1 nm were detected only in reactions performed at 
temperatures of 175°C or greater, figure 1A. Typically, polyol syntheses 
are performed at higher temperatures (250-350°C), and for a longer 
times (~10 hours). Under these conditions, the size of the nanoparticles 
can be tuned within the range of 4 nm to approximately 50 nm [50,51]. 
In contrast, our results show that under microwave heating (15 minutes, 
[Fe(acac)3]=10−3 M), the kinetics of nanoparticle formation are altered. 
As shown in figure 1B, globular nanoparticles with a diameter of 2 
nm were formed at temperatures as low as 140°C. When the reaction 
temperature was raised, the size of the nanoparticles (which retained 
the same spherical morphology) increased linearly (Figure 1C). Such 

Scheme 1: A graphical representation of the ligand exchange process TREG-
Alendronate on the surface of the superparamagnetic iron oxide nanoparticles 
(SPIONs). SPIONs originally obtained with TREG molecules, provide an 
outstanding platform on which different molecules can be attached to their 
surface.
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experiments show that microwave heating, causes faster nucleation 
and leads to highly uniform nanoparticles, highlighting the key 
role that temperature plays in nanoparticle formation and growth 
[52]. Furthermore, these results suggest that nucleation rate is more 
sensitive to temperature variation than growth rate, which essentially 
depends on the reaction time [53]. Finally, with microwave heating, the 
temperature is homogeneous in the reactor vessel which may explain 
the narrow size distribution of the particles produced (Figure 1B, 
inset). Thus, a moderate temperature (140°C) and a short reaction time 
(15 min) under microwave heating were sufficient to produce small (2 
nm), monodisperse iron oxide nanoparticles. 

Figure 1C shows DLS size measurements (made in aqueous acidic 
solution) of the microwave-produced nanoparticles. The hydrodynamic 
sizes of the nanoparticles increases from 4 nm at 140°C to 7 nm 
at 200°C. The sizes measured by DLS are slightly larger than those 
measured by TEM, a difference that can be explained by the presence 
of TREG molecules and the hydrogen bonded water molecules on the 
nanoparticle surface. 

Microwave heating was found to have a noticeable effect on 
nanoparticle size in polyol synthesis and allowed short reaction times 
and greater control if the size of the iron oxide nanoparticle.

Magnetic characterization

Measurement of the magnetic properties of the nanoparticles 
was carried out using a MIAtek reader (Magnetic Immunoassays 
Technology). Figure 2 shows the signal proportional to the third 
derivative of magnetization at zero magnetic field and room temperature 
of nanoparticles produced by conventional or microwave heating. The 
nanoparticles produced by conventional heating were found to have 
lower magnetism which can be explained by their smaller size [53]. 
Typically, nanoparticles with 2 to 30 nm in size are expected to be 
superparamagnetic. In contrast, the MIAtek signals of the particles 
synthesized by microwave heating were dramatically enhanced from 
400 to 23,000 MIAtek units/mg, for reaction temperatures that ranged 
from 140 to 200°C, respectively. This increase in signal intensity is likely 
a consequence of the particles increased size, their decreased surface to 
volume ratio, as well as modification of their crystalline phase. These 
results provide evidence for what we believe is the first example of a 
microwave-assisted synthesis of ultra-small superparamagnetic iron 
oxide nanoparticles (2-4 nm). 

Surface chemistry and reactivity

The as-synthesized nanoparticles were first characterized by FTIR 
(Figure 3A). The peaks at 2962–2809, 1632, 1455, 1350, 1251 and 1063 
cm−1 are characteristic of the C–H stretching, O–H stretching, C–H 
bending, C–O bending and O–H bending vibrations, respectively, and 
are attributed to the adsorbed TREG molecules on the particles surface 
[45]. A FTIR spectrum (Figure 3B) of a sample of cleaned nanoparticles 
lacks these signals and indicates that the TREG was removed from the 
particles surface.

The cleaned surface of the microwave-synthesized (140°C, 15 
minutes, 2 nm) nanoparticles was functionalized with Alendronate. 
The passivation process was performed in acidic media (pH 2) at room 
temperature, and the nanoparticles’ surface was characterized by FTIR 
and TGA.

The FTIR spectra of the nanoparticles coated with Alendronate 
(Figure 3C) as compared to the free Alendronate (Figure 3D) show large 
differences within the P-O stretching region (1200−900 cm–1), indicating 

Figure 1: TEM images of the products of reactions carried out at different 
temperatures for 15 minutes using A) conventional and B) microwave heating, 
C) TEM (blue) versus DLS (orange) size measurements of the microwave-
produced nanoparticles. B inset/size distribution of the particles produced 
under microwave heating at different temperature for 15 minutes.

Figure 2: MIAtek signal of the obtained nanoparticles at different temperature 
using conventional (blue) vs. microwave (orange) heating.

Figure 3: FTIR spectra of microwave assisted iron oxide nanoparticles (140°C, 
15 minutes, 2 nm) A) as-synthesized nanoparticles, B) clean nanoparticles, C) 
nanoparticles coated with alendronate, and D) free alendronate.
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successful adsorption of phosphonic acids onto the iron oxide surface. 
Moreover, the amine bending vibration band (1540 cm–1) for Alendronate 
was not affected.

In order to quantify the amount of Alendronate on the surface of 
the nanoparticles, TGA of the Alendronate coated ones as well as free 
Alendronate molecule are shown in figures 4A and 4B, respectively. 
The 200-500°C temperature range was chosen as the Alendronate 
desorption zone. Below 200°C, the slight weight loss is due to solvent 
evaporation. Above 500°C, weight loss is due to iron oxide. The TGA 
curve (Figure 4B) of the nanoparticles coated with Alendronate shows 
two different weight losses (Figure 4C), one at 100°C corresponding to 
water removal (2.36%) and a second one characteristic of Alendronate 
combustion (20.68%). Finally, the residual weight corresponds to 
iron oxides (75.96%). Using these weight loss percentage values, we 
calculated that there were on average 10 Alendronate molecules bound 
to each nanoparticle.

Conclusion
We have developed a new, fast and green synthetic route to ultra-

small, superparamagnetic iron oxide nanoparticles via microwave 
heating. Iron oxide nanoparticles with small hydrodynamic sizes (2-4 
nm), reasonable polydispersity, and excellent magnetic properties 
have been synthesized using moderate reaction temperature (140°C) 
and very fast reaction time (15 min). We have also demonstrated the 
strong influence that temperature and uniform microwave heating 
on nanoparticles formation. The nanoparticles obtained were easily 
dispersible in water and their surface was coated with biocompatible 
molecules, in particular, Alendronate, an anticancer drug of the 
bisphosphonate family. The sum of these results strongly motivates 
us to consider these nanoparticles as potential drug carriers and 
simultaneously to assess their properties as MRI contrast agents.
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