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Introduction
A central goal in the biological and biomedical sciences is to identify 

the genetic basis of morphological, physiological, behavioral, and 
disease traits. Over the last decade, improvements in deoxyribonucleic 
acid (DNA) sequencing technologies coupled with active development 
of genome-wide association (GWA) methods have made it possible 
to link genetic variation and quantitative traits in a wide range of 
organisms, including humans. However, despite substantial progress in 

and bioinformatic challenges remain [1,2]. For example, while GWA 
studies have identified a large number of loci contributing to human 
disease, these loci rarely map to individual genes, let alone individual 
mutations [3-5]. Moreover, identified loci typically account for only a 
fraction of the total heritable variation in quantitative traits. To date, 
multiple overlapping explanations have been proposed to account 
for this “missing heritability” [6,7]. These explanations, some of 
which are described in more detail below, implicate several strategies 
for improving on current GWA methodology, including: increased 
sampling (of genetic regions and individuals), better measurements 
of traits and environmental variables, and improvements of existing 
statistical methodology. Here, we focus on the potential for using a novel 
statistical framework—tree-based association mapping—for improving 
our ability to map complex traits (i.e., those due to multiple genes and 
that are influenced by environment, genotype-by-environment, and 
genotype-by-genotype effects).

One of the leading explanations for missing heritability in human 
GWA studies is that many common diseases (e.g., cancer, diabetes, 
and heart disease) likely stem from the combined action of a large 
number of rare variants with individually small impacts on disease 
susceptibility. For example, despite the hundreds of GWA studies that 
have been performed to date, large-effect variants (e.g., APOE4 in 
Alzheimer’s disease and CFH in age-related macular degeneration) 
remain the exception rather than the rule [3]. Using currently available 
mapping methods, small effect loci will be extremely difficult to detect 
without massive sample sizes. 

Another potential explanation for missing heritability is that many 
genetic variants could be largely dependent on the environmental 
and genetic contexts in which they occur. For example, variation at 

the monoamine oxidase A (MAOA) gene is associated with violent 
behavior in humans, but only if the individual was abused as a child 
[8]. Also, gene-gene interactions (epistasis) are well-documented in 
controlled laboratory crosses in model organisms such as fruit flies and 
mice. While identification of epistasis remains elusive in humans [9,10], 
likely due to limited statistical power to detect gene-gene interactions in 
GWA studies of genetically diverse human populations, it is suspected 
to be widespread [3,11,12]. Disease susceptibility variants can also 
depend on sex [13] or on the parent from which the allele was inherited 
[14]. In short, the impact of a given genetic variant on a disease trait is 
often highly context-dependent. Such variants may be very difficult to 
detect when traits are measured in multiple genetic backgrounds and/
or multiple environments, as is often the case in GWA studies. Ignoring 
such information during analyses may reduce the power to identify 
associated genetic loci when multiple factors (genetic or otherwise) 
influence a quantitative trait. Developing methods that can adapt to the 
different contexts of GWA study data sets may increase the power to 

Many of the current limitations of association mapping methods 
ultimately stem from limitations on the power to detect and localize 
causal variants (either because they have small effect sizes, are context-
dependent, or both). While increasing sample size is one way to 
approach this problem, another strategy is to develop more powerful 
statistical methods that can take greater advantage of the information 
contained within the data. In particular, in contrast to most commonly 
used methods for association mapping, tree-based methods use the 
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Abstract
Over the last decade, improvements in sequencing technologies coupled with active development of association 

mapping methods have made it possible to link genotypes and quantitative traits in humans. Despite substantial progress 

find, even in studies with large numbers of individuals and genetic markers. This is due, in part, to the fact that effects of 
individual loci can be small and/or dependent on genetic variation at other loci or the environment. Tree-based mapping, 
which uses the evolutionary relatedness of sampled individuals to gain information during association mapping, has the 
potential to significantly improve our ability to detect loci impacting human traits. However, current tree-based methods 
are too computationally intensive and inflexible to be of practical use. Here, we compare tree-based methods with 
more classical approaches for association mapping and discuss how the limitations of these newer methods might be 
addressed. Ultimately, these advances have the potential to advance our understanding of the molecular mechanisms 
underlying complex diseases.

in the ability to generate and analyze large data sets, however, genotype-phenotype associations are often difficult to 

our ability to generate and analyze large data sets, important statistical 

detect associated loci using  quantitative trait mapping.
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evolutionary relatedness of sampled individuals to gain information 
during analysis. Thus, there is potential for these methods to show 
increased power in detecting small effects and/or context-dependent 
loci. However, most currently available tree-based methods [15-19] are 
computationally inefficient and/or cannot take into account external 
covariates that may influence variation in quantitative traits. Extending 
tree-based methods to the wider variety of contexts provided by 
GWA study data sets may improve the power in association mapping 
compared to existing non-tree based approaches. Before describing 
tree-based methods in more detail, we discuss the rationale for genetic 
mapping and the advantages and limitations of existing association 
mapping methods.

Background
The conceptual basis of quantitative trait mapping (QTM), in 

which statistical correlations are sought between quantitative traits and 
polymorphic DNA variants (“markers”), stems back to the early part 
of the 20th century [20]. However, it has only been relatively recently 
that widespread availability of variable markers (e.g., single nucleotide 
polymorphisms (SNPs), insertion/deletion mutations (indels), or 
simple sequence repeats (microsatellites)) has made QTM feasible in 
humans [3]. In some cases, QTM is performed when the relationships 
among sampled individuals are known (linkage mapping), while 
in other cases, the relationships among individuals are unknown 
(association mapping). The present editorial focuses on the techniques 
developed for association mapping, although the reader is referred to 
the existing literature for information about the analysis of data with 
known familial relationships among sampled individuals [21-24]. 
Thus far, methodology proposed for association mapping either uses 
information in the evolutionary history present among genes and 
excludes other available information (including but not limited to 
experimental information and external covariate information) or uses 
external covariates to inform the analysis through the direct application 
of classical techniques that ignore the evolutionary relationships present 
within a particular SNP. 

Classical statistical techniques applied in association mapping 
include the t-test, Analyses of Variance (ANOVA), and generalized 
linear model approaches that can be applied either marginally at each 
SNP or jointly on small neighboring sets of SNPs. Using generalized 
linear models allows straightforward adjustment for covariates during 
analyses [24-28]. More generally, classical statistical approaches are 
simple and readily-available, so that they are computationally efficient 
to implement on large GWA study data sets, making them popular 
approaches to association mapping. However, the precise localization 

these approaches assume independence among sampled individuals at 
each SNP, while the evolutionary relationships among these sampled 
individuals could be a potential source of covariation. By failing to 
consider shared evolutionary history among sampled individuals, 
classical statistical techniques could lose power to identify causal 
locations compared to methods that utilize this information.

Information about the evolutionary history for sampled observations 
can be represented by a bifurcating phylogenetic tree, as in Figure 1. The 
tips of the tree represent the sampled individuals at the present time, 
and the leftmost point on the tree represents the most recent common 
ancestor of the genetic variant under study. The lengths of the branches 
represent time, so that, if two observations share a branch, they share that 
part of their evolutionary history. Observations evolve independently 

after a split in their evolutionary history (represented by a split in a 
branch on the phylogenetic tree when viewed from left to right). If two 

large part of their evolutionary history, they are expected to have greater 
similarity in their trait(s) than two observations that share only a small 
portion of their evolutionary history (such as those denoted by blue 
circles). In fact, the technique in Thompson and Kubatko [17] suggests 
that, at a causal SNP, the covariance between two sampled observations 
could be approximated by the length of shared evolutionary history for 
that particular SNP. Phylogenetic methods provide an avenue to use the 
evolutionary relatedness among sampled individuals in the analysis of 
GWA study data, which may also be beneficial to association mapping 
[30].

Tree-based methods use estimated phylogenetic trees to gain 
information about the evolutionary history of a set of randomly 
sampled outbred individuals, and these methods show increased 
power compared to classical statistical techniques that ignore this 
information. Previous tree-based methods include those in Zöllner 
and Pritchard [19], which are not computationally feasible for large 
data sets, and Besenbacher et al., Pan et al., Zhang et al. [15,16,18], 
which consider all possible groups of observations compatible with 
the estimated phylogenies during association analysis. Because these 
methods use estimated phylogenies for each sampled SNP, they are 
especially computationally intensive. The method in Thompson and 
Kubatko [17] limits the required number of computations at the 
expense of considering only groups of observations defined by the 
earliest evolutionary events (edges) along an estimated phylogeny. In 
addition, current tree-based methods for data from randomly sampled 
individuals are limited by their inability to incorporate covariate 
information or any other existing information during association 
mapping. By extending these methods and remaining cognizant of the 
computational difficulties often associated with them, phylogenetic 
tools may provide an avenue for researchers to use external information 
during association mapping and achieve superior power over classical 
statistical techniques.

Future Directions
While the immediate goal of QTM is to identify loci that are 

statistically associated with complex trait variation, the ultimate goal 
is to use this information to uncover the biological underpinnings of 
quantitative trait variation and human disease. To these ends, finding 

 
Figure 1: Example of a phylogeny at a particular SNP. In the phylogenetic 
tree, time moves from past (left) to present (right) across the tree, and the 
tips of the tree represent observations from the present time.  The amount 
of shared evolutionary history among the two observations with red squares 
is large, so that a large covariance is expected among their trait values.  
In contrast, the two observations denoted by blue circles share a smaller 
portion of their evolutionary history, so that little covariance in their trait 
values is expected from shared evolutionary history.

observations (such as those denoted by red squares in Figure 1 share a 

of associated SNPs is not readily addressed by current techniques 
that are flexible enough to allow for covariates [25,29]. Additionally, 
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genomic regions harboring causal variants is not enough—it is only 
through finding the causal mutations themselves that we can dissect 
the molecular mechanisms that connect changes at the DNA level to 
traits expressed at the organism level. Moreover, many longstanding 
evolutionary questions are best informed by the identification of 
mutations rather than genomic regions [31], such as: Does adaptation 
proceed via a few large mutational steps or many small ones? Do 
individual mutations tend to impact few or many traits? How often do 
populations adapting to similar conditions utilize the same mutational 
solutions? Unfortunately, few GWA studies have achieved gene-level 
resolution, and even fewer have achieved mutation-level resolution. 
Detection and localization are especially challenging when individual 
effects are small and/or context-dependent. By extracting more 
information from the data, tree-based methods have the potential to 
significantly improve our ability to find causal mutations. In particular, 
the performance of association mapping methods may be improved by 
estimating covariance structures using ancestral information within 
genes, which can be done using phylogenetic techniques. If successful, 
these methods may help recover some of the “missing heritability” that 
has plagued GWA studies of complex diseases to date. 
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However, two significant challenges in the development of tree-
based association methods remain. First, existing methods are too 
computationally intensive to be of practical use for large GWA studies. 
The methods in Besenbacher et al. [15] and Thompson and Kubatko 
[17] propose the use of broad-scale evolutionary relationships 
to address this limitation. Second, while context-dependence is 
pervasive in quantitative traits, current tree-based methods are not 
flexible enough to take into account environmental or gender-specific 
covariates. Importantly, context-dependent effects are more than just 
nuisance parameters in association mapping—gene-environment and 
gene-gene interactions may provide essential clues to the molecular 
pathways underlying complex traits. Thus, methods that show an 
improved ability to detect and quantify epistatic effects and genotype-
by-environment interactions would represent a significant advance in 
GWA methodology. Together, these improvements have the potential 
to yield novel insights into the genetics of complex diseases that may 
better inform disease prediction and treatment strategies.
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