alexa An Approach to Grid-based Fire Frequency Analysis for D
ISSN: 2168-9873

Journal of Applied Mechanical Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

An Approach to Grid-based Fire Frequency Analysis for Design Accidental Loads in Offshore Installations

Seo JK1* and Bae SY2
1The Ship and Offshore Research Institute, Pusan National University, Busan, Korea
2Electric and Electronic Research Division, Korea Marine Equipment Research Institute, Busan, Korea
*Corresponding Author : Seo JK
The Ship and Offshore Research Institute
Pusan National University, Busan, Korea
Tel: +82 51 510-2415
E-mail: [email protected]
Received February 03, 2016; Accepted February 26, 2016; Published February 29, 2016
Citation: Seo JK, Bae SY (2016) An Approach to Grid-based Fire Frequency Analysis for Design Accidental Loads in Offshore Installations. J Appl Mech Eng 5:201. doi:10.4172/2168-9873.1000201
Copyright: © 2016 Seo JK, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
 

Abstract

This paper describes the approach for establishing the Design Accidental Load (DAL) fire based on a grid-based fire risk analysis. Representative cases are screened via an initial fire risk analysis where the leak frequencies, ignition probabilities and inventories are combined to determine the cases with the highest risk. The fire risk analysis is subsequently performed based on the consequence results and the fire frequencies. Although many initiates for risk assessment were taken, there are many limitation and uncertainties on frequency analysis. Especially, calculation of ignition probability for an accidental hydrocarbon release on an offshore platform is a complex issue. To overcome these limitations of historical accident data, time dependent ignition model is developed a model for probability of ignition of hydrocarbon gas leakages on offshore platforms on based of ignition model presented by some JIPs for offshore risk assessment and improved understanding of ignition mechanisms. In this paper, we reviewed the existing probabilistic risk assessment method, such as ignition models, fire and explosion models, and selected the ones most suitable for offshore conditions. Then applied grid-based fire frequency analysis in the risk assessment. Two main revisions were incorporated: a grid-based approach was adopted to enable better consequence/impact modelling and analysis of radiation, and an enhanced onsite ignition model was integrated in the consequence assessment process to obtain better results. This study will be useful for the fire frequency analysis on offshore platform topsides as one of procedures of quantitative risk assessment.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords