alexa Formulation of Sustained Release Floating Microspheres of Furosemide from Ethylcellulose and Hydroxypropyl Methylcellulose Polymer Blends | OMICS International
ISSN: 2157-7439

Journal of Nanomedicine & Nanotechnology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Formulation of Sustained Release Floating Microspheres of Furosemide from Ethylcellulose and Hydroxypropyl Methylcellulose Polymer Blends

Mulugeta Fentie*, Anteneh Belete and Tsige Gebre-Mariam

Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia

*Corresponding Author:
Mulugeta Fentie
Department of Pharmaceutics and Social Pharmacy
School of Pharmacy, Addis Ababa University
P. O. Box 1176, Addis Ababa, Ethiopia
Tel: 251-111-239-752
E-mail: [email protected]

Received Date: September 15, 2014; Accepted Date: January 13, 2015; Published Date: January 23, 2015

Citation: Fentie M, Belete A, Mariam TG (2015) Formulation of Sustained Release Floating Microspheres of Furosemide from Ethylcellulose and Hydroxypropyl Methylcellulose Polymer Blends. J Nanomed Nanotechnol 6:262. doi:10.4172/2157-7439.1000262

Copyright: © 2015 Fentie M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Furosemide is a potent and commonly used loop diuretic. It is absorbed largely in the stomach and upper small intestine. This narrow absorption window is responsible for its low bioavailability of about 50%, and variable and erratic absorption. The objective of the present investigation was to formulate and evaluate floating microspheres of furosemide for prolonged buoyancy with sustained delivery of the drug into the gastric content. Furosemide loaded microspheres were prepared by the solvent evaporation method. The drug entrapment efficiency was high for all of the formulations ranging from 86.2 to 98.4%. The yield of microspheres production was good partticularly at increased EC/HPMC ratio and lower temperatures. Drug amount and EC/HPMC ratio showed highly significant effects (p<0.0001) on cumulative drug release and buoyancy of microspheres. Floating microspheres that effectively sustain the drug release more than 12 h and exhibit buoyancy of greater than 77% in 12 h were developed. Finally the study confirmed that various furosemide loaded EC/HPMC microspheres formulations could be developed that effectively sustain the drug release for a desired period by varing the ratio of EC and HPMC, and drug amount.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version