alexa Investigation of Inlet Boundary Conditions on Capillary Membrane with Porous Wall during Dead-End Backwash | OMICS International
ISSN: 2155-9589

Journal of Membrane Science & Technology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Investigation of Inlet Boundary Conditions on Capillary Membrane with Porous Wall during Dead-End Backwash

Hussam Mansour* and Wojciech Kowalczyk

Chair of Mechanics and Robotics, University of Duisburg-Essen, Lotharstr, Duisburg, Germany

*Corresponding Author:
Hussam Mansour
Chair of Mechanics and Robotics, University of Duisburg-Essen
Lotharstr. Duisburg, Germany
Tel: +49 203 379 3342
Fax: +49 203 379 2494
E-mail: [email protected]

Received date: September 19, 2015; Accepted date: November 19, 2015; Published date: November 26, 2015

Citation: Mansour H, Kowalczyk W (2015) Investigation of Inlet Boundary Conditions on Capillary Membrane with Porous Wall during Dead-End Backwash. J Membra Sci Technol 5:138. doi: 10.4172/2155-9589.1000138

Copyright: © 2015 Mansour H, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The capillary membrane technology has become one of the effective methods for producing drinking water. The membrane lifetime and permeability are significantly affected by operating and backwash conditions. To enhance the backwash process, the flow in the porous wall and the pressure drop inside the capillary membrane were investigated numerically. For this purpose, 3D model describing steady-state laminar flow inside the capillary membrane operated in dead-end mode was simulated. The influence of various boundary conditions on both the flow pattern inside the capillary membrane and the characteristic of the membrane were studied. Hereby, the pressure drop in the module and the axial as well as radial velocity profile were estimated with the consideration of the membrane fouling. The calculation of permeate flux contributes to increase the backwash performance and minimize energy consumption. The method of coupling Navier-Stokes equation for the free flow and Darcy-Forchheimer approach for the prediction of the flow in the porous membrane is proposed in the current study. The CFD model was validated by comparing the numerical results with the experimental data. A very good agreement was achieved.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version