alexa Challenges In Multi-scale Modeling Of Fuel Electro-oxidation For Fuel Cell Applications
ISSN:2157-7463

Journal of Petroleum & Environmental Biotechnology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

World Congress on Petrochemistry and Chemical Engineering
November 18-20, 2013 Hilton San Antonio Airport, TX, USA

Daniela Mainardi
ScientificTracks Abstracts: J Pet Environ Biotechnol
DOI: 10.4172/2157-7463.S1.002
Abstract
The high-cost of materials and efficiency limitations chemical fuel cells currently have is a topic of primary concern. Many industries are currently focusing on PEM fuel cells engineering and design for improved performance and durability, and reduced cost. This situation has led to an urgent need for understanding, predicting, and optimizing the various transport and electrochemical processes that occur in PEM fuel cells, where modeling has played a key role. Bioelectrochemical generation of power by enzymes has also been considered. Enzymatic fuel cells have been reported to have power output and stability limitations; which are restricting the use of this kind of fuel cell to small electronic devices. However, understanding how enzymes carry out oxidation processes could lead to the development of new synthetic bio-inspired chemical catalysts that could impact the use of cheap fuels, such as methanol. Challenges associated to a multi-scale modeling approach to model fuel electro-oxidation in PEM and bio fuel cells are discussed here. A combination of tools involving Density Functional Theory, Transition State Theory, Molecular Mechanics and Kinetic Monte Carlo are combined in order to model fuel electro-oxidation. Information regarding energy barriers and pre- exponential factors needed to determine reaction rates are obtained from DFT and TST respectively. These microscopic reaction rates are then provided as inputs in the kMC program, and the fuel oxidation process is modeled on a 2-D reactive surface representing the catalyst
Biography
Daniela Mainardi is an Associate Professor and Program Chair of Chemical Engineering at Louisiana Tech University; currently holding the Thomas C. & Nelda M. Jeffery Professorship in Chemical Engineering. Mainardi has extensive experience in a large variety of multi-scale molecular simulation tools and has conducted research on different and complementary nano- and bio-technology-related topics with applications to transport and catalysis. Mainardi has received the NSF-CAREER award in 2005 on Modified-Methanol Dehydrogenase Enzymatic Catalysts For Fuel Cell Devices. Mainardi is a senior member of the American Institute of Chemical Engineers (AIChE) and the current AIChE Transport and Energy Processes Division Chair
image PDF   |   image HTML
 

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version