alexa Discovery Of Structure-based Small Molecular Inhibitor Of αB-crystallin Against Basal-like/triple Negative Breast Cancer Development In Vitro And In Vivo
ISSN: 2157-7633

Journal of Stem Cell Research & Therapy
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading Please wait..

3rd International Conference and Exhibition on Cell & Gene Therapy
October 27-29, 2014 Embassy Suites Las Vegas, USA

Jun Cai
Posters: J Stem Cell Res Ther
DOI: 10.4172/2157-7633.S1.008
αB-crystallin (CRYAB) is present at a high frequency in poor prognosis basal-like breast tumours, which are largely absent of oestrogen, progesterone receptors and HER2 known as triple-negative breast cancer (TNBC). CRYAB functions as a molecular chaperone to bind to and correct intracellular misfolded/unfolded proteins such as vascular endothelial growth factor (VEGF), preventing nonspecific protein aggregations under the influence of the tumour microenvironment stress and/or anticancer treatments including bevacizumab therapy. Directly targeting CRYAB can sensitize tumour cells to chemotherapeutic agents and decrease tumour aggressiveness. However, growing evidence shows that CRYAB is a critical adaptive response element after ischemic heart disease and stroke, implying that directly targeting CRYAB might cause serious unwanted sideeffects. Here, we used structure-based molecular docking of CRYAB and identified a potent small molecular inhibitor, NCI- 41356, which can strongly block the interaction between CRYAB and VEGF165. The disruption of the interaction between CRYAB and VEGF165 elicits in vitro anti-tumour cell proliferation and invasive effects through the down-regulation of VEGF signalling in the breast cancer cells. The observed in vitro anti-tumour angiogenesis of endothelial cells might be attributed to the down-regulation of paracrine VEGF signalling in the breast cancer cells after treatment with NCI-41356. One hundred micromolar intraperitoneal injection of NCI-41356 greatly inhibits the tumour growth and vasculature development in in vivo human breast cancer xenograft models. Our findings provide ?proof-of-concept? for the development of highly specific structure-based alternative targeted therapy for the prevention and/or treatment of TNBC.
image PDF   |   image HTML

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version