Awards Nomination 20+ Million Readerbase
Indexed In
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Scimago
  • Ulrich's Periodicals Directory
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • MIAR
  • Scientific Indexing Services (SIS)
  • Euro Pub
  • Google Scholar
Share This Page
Journal Flyer
Flyer image
iNAPO- Ion conducting nanopores in polymer foils as (bio)chemical sensors
6th Global Experts Meeting on Nanomaterials and Nanotechnology
April 21-23, 2016 Valencia, Spain

Wolfgang Ensinger

Darmstadt University of Technology, Germany

Keynote: J Nanomed Nanotechnol

Abstract:

The iNAPO-project is run by a group of materials scientists, biologists, chemists, physicists and electrical engineers. The purpose is the development of biomimetic (bio) molecular sensors based on ion conducting nanopores in polymer foils. The basic principles of fabrication and working mechanism of these nanosensors are described. PET foils are irradiated with a highly energetic single ion of a heavy element at the particle accelerator at GSI Helmholtz-Center in Darmstadt. The ion damage zone in the polymer is chemically etched into a conical pore, with the small aperture being in the nm range. The nanopore walls are functionalized with a biorecognition unit, i.e., a molecule which specifically reacts with a molecule to be analyzed. In an electrochemical cell, the foil acts as separation membrane. The electrolyte current flowing through it is measured as a function of the applied potential. In the presence of specific analyte molecules, which bioconjugate with the biorecognition unit, these ionic currents are changed. Thus, a highly sensitive nanosensor is available. The preparation and working principle of the nanosensor is described. As an example, results on protein sensing are shown. The concept of the functionalized ion conducting nanopores can be applied to a large number of biorecognition couples. Within the project iNAPO, the potential of this technique will be further explored. In a step further, it is planned to embed protein-based nanopores with even better selectivity into polymer membranes. Eventually, the membranes will be incorporated in electronic micro sensing devices thus creating a new type of (bio) molecular sensors.

Biography :

Wolfgang Ensinger studied Chemistry and Physics at the Universities in Karlsruhe and Heidelberg in Germany. He received his PhD in 1988 from Heidelberg University. Thereafter, he was a Guest Researcher at Osaka National Research Institute in Japan, Lecturer at Institute of Solid State Physics at University Augsburg and Professor of Analytical and Nuclear Chemistry at University of Marburg. Since 2004, he is a Full Professor of Material Analysis at Technical University of Darmstadt in Germany. His research topics include formation of thin films and nanostructures, including nanochannels, nanowires and nanotubes. He has authored/ co-authored more than 250 peer-reviewed scientific publications.

Email: ensinger@ma.tu-darmstadt.de