alexa Post-transcriptional Modification Of RNA: Effect On Biology And Virulence Of Salmonella
ISSN: 2327-5073

Clinical Microbiology: Open Access
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading Please wait..

3rd International Conference on Clinical Microbiology & Microbial Genomics
September 24-26, 2014 Valencia Convention Centre, Spain

Amin A Fadl
ScientificTracks Abstracts: Clin Microbial
DOI: 10.4172/2327-5073.S1.013
GidA together with another protein known as MnmE catalyze the tRNA modification required for correct gene translation. Our study have shown that GidA and MnmE complex together to modulate virulence genes in Salmonella as indicated by in vitro experiments, animal model and a global transcriptome and proteome analyses. Mice immunized with the gidA, mnmE and gidA/mnmE mutants were protected against a lethal dose of wild-type. The mechanistic basis of such protection was identified to be humoral and cellular immunity with the humoral immune response potentially being the main mechanism of protection. The gidAB operon includes the gidA and gidB genes. The gidB encodes a methyltransferase enzyme responsible for methylation of 16S ribosomal RNA in Escherichia coli. Deletion of Salmonella gidB gene indicated a compromised overall bacterial fitness, significantly reduced motility and showed a filamentous morphology under the stress of nalidixic acid. Most importantly, deletion of gidB conferred high-level resistance to the aminoglycoside antibiotics. Additionally, transcriptional repressor AsnC, located upstream of the gidAB operon, is thought to negatively regulate the gidAB operon post-transcriptionally. Therefore, we investigated the role of AsnC and the environmental factors affecting gene expression in the gidAB operon using transcriptional and proteomic analyses. Taken together, these data indicated that GidA, GidB and MnmE enzymes play a significant role in modulation of biological and virulence characteristics in Salmonella under stress conditions. Further, these studies indicated that the gidAB operon is regulated at post-transcriptional level by glucose and stressful conditions as well as the AsnC protein.
Amin A Fadl obtained his PhD from University of Connecticut, USA and completed a postdoctoral training at the University of Texas Medical Branch. Currently, he is an Assistant Professor of Microbiology at the University of Wisconsin-Madison. His research focuses on the molecular pathogenesis, immune and inflammatory responses, and host-pathogen interaction of Salmonella. He has published more than 46 papers in reputed journals.
image PDF   |   image HTML

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version