alexa Spectroscopic Analyses Of Gram-negative Bacterial Iron Transport Reactions
ISSN: 2155-9597

Journal of Bacteriology & Parasitology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Share This Page

Additional Info

Loading Please wait..

2nd International Congress on Bacteriology & Infectious Diseases
November 17-19, 2014 DoubleTree by Hilton Hotel Chicago-North Shore, USA

Phillip E Klebba
ScientificTracks Abstracts: J Bacteriol Parasitol
DOI: 10.4172/2155-9597.S1.006
Gram-negative bacteria, including both commensal and pathogenic species, acquire iron with TonB-dependent uptake systems. Using fluorescence spectroscopic analyses of the Escherichia coli outer membrane (OM) protein FepA and its cell envelope partner TonB, it was described dynamic actions of both proteins during the uptake of ferric enterobactin (FeEnt). When FeEnt interacts with fluoresceinated FepA, the quenching of light emissions reflects its binding and transport process as a series of conformational motions in the receptor protein. This simple experimental system involves genetically engineering Cys sulfhydryls in any of 7 surface loops of FepA and fluorophore maleimides reacting with them. Spectroscopic or microscopic fluorescence intensity changes, ultimately mirrored cellular uptake that depleted FeEnt from solution. The TonB-ExbBD inner membrane complex transfers energy to OM iron transporters like FepA. (GFP)-TonB hybrid proteins were used to investigate its activity. Fluorescence microscopic characterization of the (GFP)-TonB hybrids revealed an unexpected, restricted localization of TonB in the central region of the cell envelope. Fluorescence polarization measurements demonstrated energy-dependent motion of TonB in living cells, which likely was rotation. The findings show that TonB undergoes energized motion in the bacterial cell envelope and that ExbBD couples this activity to the electrochemical gradient. The results portray TonB as an energized entity in a regular array underlying the OM bilayer, which promotes metal uptake through OM transporters by a rotational mechanism.
Phillip E Klebba received his doctorate in Biochemistry at the University of California, Berkeley, working with the discoverer of siderophores, Dr. Joe . Neilands. He performed post-doctoral study with Drs. Leon Rosenberg at Stanford University and Hiroshi Nikaido at UC Berkeley, and was a visiting professor with Drs Maurice Hofnung, Institut Pasteur, Alain Charbit, Institut Necker, and Ron Kaback, UCLA. He is Head of Biochemistry and Molecular Biophysics at Kansas State University. His research interests focus on biophysical approaches to problems in membrane transport, especially iron acquisition by bacteria.
image PDF   |   image HTML

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version