alexa Abstract | Study of the Selectivity of Methane over Carbon Dioxide Using Composite Inorganic Membranes for Natural Gas Processing
ISSN: 2090-4568

Journal of Advanced Chemical Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access


Natural gas is an important fuel gas that can be used as a power generation fuel and as a basic raw material in petrochemical industries. Its composition varies extensively from one gas field to another. Despite this variation in the composition from source to source, the major component of natural gas is methane with inert gases and carbon dioxide. Hence, all natural gas must undergo some treatment with about 20% of total reserves requiring extensive treatment before transportation via pipelines. The question is can mesoporous membrane be highly selective for methane and be used for the treatment of natural gas? A methodology based on the use of dip-coated silica and zeolite membrane was developed. A single gas permeation test using a membrane reactor was carried out at a temperature of 293 K and a pressure range of 1 × 10-5 to 1 × 10-4 Pa. The permeance of CH4 was in the range of 1.15 × 10-6 to 2.88 × 10-6 mols-1m-2Pa-1 and a CH4/CO2 selectivity of 1.27 at 293 K and 0.09 MPa was obtained. The pore size of the membrane was evaluated using nitrogen adsorption and was found to be 2.09 nm. The results obtained have shown that it is possible to use a mesoporous membrane to selectively remove carbon dioxide from methane to produce pipeline quality natural gas. There is a need for further study of the transport mechanism of methane through the membrane since this is essential for the separation of other hydrocarbons that could be present as impurities.

To read the full article Peer-reviewed Article PDF image | Peer-reviewed Full Article image

Author(s): Habiba Shehu, Edidiong Okon, Ifeyinwa Orakwe and Edward Gobina


Membrane,Natural gas,Permeation,Silica,Zeolite, Chemical Technology,Cheminformatics,Corrosion,Inorganic Chemical Technology,Mass Transfer

Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version