Page 114
Notes:
conferenceseries
.com
Volume 10, Issue 8 (Suppl)
J Proteomics Bioinform, an open access journal
ISSN: 0974-276X
Structural Biology 2017
September 18-20, 2017
9
th
International Conference on
Structural Biology
September 18-20, 2017 Zurich, Switzerland
Igor L Barsukov, J Proteomics Bioinform 2017, 10:8(Suppl)
DOI: 10.4172/0974-276X-C1-0100
LD motif interacting networks in cell-matrix adhesion
Igor L Barsukov
University of Liverpool, UK
Statement of the Problem:
Cell-matrix adhesion requires assembly of large multi-protein complexes linked to the cyto-
domains on the integrin adhesion receptors. These complexes dynamically change in response to the adhesion forces and
environmental signals. Mechano-sensitive adaptor protein talin couples the force and adhesion signaling by acting as a hub
for numerous, often competitive, interactions. The molecular mechanism that controls the co-ordination of the interactions
in time and space is currently not understood. The aim of this study is to define the interactions between talin and Rho-GAP
Deleted in Liver Cancer 1 (DLC1) that regulates adhesion forces.
Methodology:
Structure of the talin/DLC1 complex was solved by X-ray crystallography and the interactions between
the proteins analyzed by NMR spectroscopy. Fluorescent imaging was used to define the interactions within the adhesion
complexes and cancer cell lines were employed to characterize the effect of the interaction on the biological activity.
Findings:
We defined the atomic details of the talin/DLC1 interactions and used this information to identify signaling
protein paxillin as a talin ligand. Based on the structural information we designed a range of talin mutants that modulate the
interactions and demonstrated that the mutations reduce DLC1 signaling in adhesion.
Conclusion & Significance:
Talin recognizes LDmotifs in DLC1 and paxillin through a set of well-defined charge interactions.
These interactions are like other LD motif interactions previously identified in signaling pathways. These interactions are also
like the interactions between talin, RIAM and vinculin that were previously not assigned to the LD motif family. Together, the
relatively weak LD motif interactions within the adhesion complex create a protein network that could dynamically respond
to the adhesion signals.
Biography
Igor L Barsukov has expertise in Structural Biology, primarily using NMR spectroscopy and X-ray crystallography. The focus of his research has been on the
structure and function of integrin-mediated cell-matrix adhesions, where he directed full structural analysis of the key adhesion proteins talin, leading to the
currently widely used model of stretch-dependent talin activation. He is currently extending the model of talin functionality to include competitive, talin based,
interaction networks. Recently he identified interactions between neuronal scaffold proteins Shank3 and Ras-family GTPase that regulate integrin activity and have
implications for control of synaptic plasticity.
igb2@liv.ac.uk




