Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Biological Engineering-Articles-open-access

Despite the tremendous success of cisplatin and other platinum-based anticancer drugs, severe toxicity and resistance to tumors limit their applications. It is believed that the coordination of the metal to DNA bases causes the ruptures of the cancer as well as normal cells. A search for anticancer drugs with different modes of action resulted in the synthesis of variety of novel compounds. Recently we synthesized a series of novel rhenium pentylcarbonato compounds (PC1-PC6). The rhenium atom in each compound is coordinated to a planar heterocyclic aromatic ligand, thereby forcing each compound to intercalate between the DNA bases. The UV absorption titrations of PC6 with DNA shows hypochromic effect with concomitant bathochromic shift of the charge transfer band at 290 nm. These results suggest that the compound PC6 binds to DNA through intercalation. It is likely that many of the other PC-series of compounds will behave in a similar manner. We have observed that the PC-series of compounds are strong cytotoxic agents against lymphosarcoma (average GI50 ≈ 2.3 ± .6 μM), PC-3 prostate (average GI50 ≈ 2.8 ± 0.6 μM) and myeloid leukemia (average GI50 ≈ 3.0 ± .6 μM) cancer cell lines. The average GI50 values of the PC-series of compounds are much less than the corresponding GI50 values of cisplatin. Also each of the PC-series of compounds exhibits less toxicity than cisplatin in the glomerular mesangial cells. [Parson C, Smith V, Krauss C, Banerjee HN, Reilly C, et al. (2013) The Effect of Novel Rhenium Compounds on Lymphosarcoma, PC-3 Prostate and Myeloid Leukemia Cancer Cell Lines and an Investigation on the DNA Binding Properties of One of these Compounds through Electronic Spectroscopy]
  • Share this page
  • Facebook
  • Twitter
  • LinkedIn
  • Google+
  • Pinterest
  • Blogger

Last date updated on September, 2024

Top