Editor Note- Cell Science & Therapy

Hassaan Tohid
Center for Mind & Brain, University of California, Davis, USA

*Corresponding author: Tohid H, Center for Mind & Brain, University of California, Davis, USA, Tel: 707-999-1268, E-mail: hassaantohid@hotmail.com

Received: June 28, 2016; Accepted: June 30, 2016; Published: June 30, 2016

Citation: Tohid H (2016) Editor’s Note on Volume 7 Issue 3. J Cell Sci Ther. 7: e124.

Background

As the field of cell sciences continues to grow and more research is conducted, at least some kind of new information is brought to surface every day. The information published is so humongous that it becomes almost impossible for a single person to follow all the new developments in the field. Thus, we need one single platform to compile the relevant data, and publish under one subject. Otherwise, not only it will be difficult for the scientists to follow but it will be deleterious for the industry, as much of the data will be lost and remain hidden under the remarkably enormous online data published every almost every day. Thus, it is the responsibility of the scientists to not only share, cite and quote the data, but also share the data with their fellow colleagues in an attempt to save the wonderful piece of work conducted by different scientists in different databases and peer reviewed journals. As a reputed journal, the Journal of Cell Science & Therapy always makes sure to publish high quality papers with correct and verified scientific information, written by well reputed scientists from across the world, under on platform of cell science and therapy. This issue highlights the same mission of the journal.

In This Issue

This current issue of the journal of cell science and therapy is an attempt to compile and collect the remarkable pieces of scientific work under one platform and publish them together as the journal has always done in the past. The current issue has published different aspects of articles related to the field of medicine. Some highlights of the issue are as follows,

Hong et al. wrote an article that is published in this current issue of cell science and therapy. The article shows that those EMT models of the renal cell carcinoma cell lines are established by CoCl2-induced hypoxia. The authors are positive that the models will be a useful source for the future scientists studying the mechanisms of EMT and find therapeutic targets to inhibit tumor metastasis and invasion.

Moreover, author Mohammad Asif wrote a remarkable review that suggests that pyridazinones can behave as potent and selective COX-2 inhibitors and may be used in the pain and inflammation management in the patients with arthritis.

Renaud et al studied a Rat tail model for osseointegration studies and new bone formation follow-up. The study demonstrates that the rat caudal vertebrae could serve as a preclinical model for studying implant osseointegration with the possibility of multiple testing within the same experimental animal.

In addition to the above mentioned articles, Vladimir F Niculescu published an article, titled “Pathogenicity of Entamoeba Species Depends on Cell Line Conversion, Genome Reprogramming and Epigenetic Gene Regulation”. According to him, the protist life cycle is more advanced than a simple sequence of trophic and non-trophic stages (cysts), and trophic cells (trophozoites) do not divide further. The Entamoeba histolytica and Entamoeba invadens show advance life cycles. Moreover, the author also suggests that the O2 gradients controlled by the host intestine and bacteria lead to cell line changes. Besides these two kinds of Entamoeba, another Entamoeba (dispar), which is less toxic, shows PST stem cell lineage just like the other two. All of these species initiate their life cycle with a primary multipotent stem cell line (p-SRL). Furthermore, because of the O2 levels, the p-SRL line converts to progenitor cell lines. The secondary s-SRL line gives rise to mitotic arrested MAS cells (cyst precursor cells). While the tertiary t-SRL line does not make cysts. It gives rise to mitotic dormant MAT cells which mature to invasive virulent cells. MAT cells that enter the mitotic cycle again, develop new t-SRL variants. In a low oxygen environment, the t-SRL line alters to symmetric cell.

These articles published in the current issue, will surely be helpful to many authors and scientists researching and writing on the subject of cell sciences.