alexa Bone stability around dental implants

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Bone stability around dental implants

The bone bed around dental implants is influenced by implant and augmentation materials, as well as the insertion technique used. The primary influencing factors include the dental implant design, augmentation technique, treatment protocol, and surgical procedure. In addition to these treatment-related factors, in the literature, local and systemic factors have been found to be related to the bone stability around implants. Bone is a dynamic organ that optimises itself depending on the loading condition above it. Bone achieves this optimisation through the remodelling process. Several studies have confirmed the importance of the implant design and direction of the applied force on the implant system. Equally dispersed strains and stresses in the physiological range should be achieved to ensure the success of an implant treatment. If a patient wishes to accelerate the treatment time, different protocols can be chosen. However, each one must consider the amount and quality of the available local bone. Immediate implantation is only successful if the primary stability of the implant can be provided from residual bone in the socket after tooth extraction. Immediate loading demands high primary stability and, sometimes, the distribution of mastication forces by splinting or even by inserting additional implants to ensure their success. Augmentation materials with various properties have been developed in recent years. In particular, resorption time and stableness affect the usefulness in different situations. Hence, treatment protocols can optimise the time for simultaneous implant placements or optimise the follow-up time for implant placement.
  • Share this page
  • Facebook
  • Twitter
  • LinkedIn
  • Google+
  • Pinterest
  • Blogger