alexa AMMI Biplot Analysis for Stability of Grain Yield in Hybrid Rice (Oryza sativa L.)

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

AMMI Biplot Analysis for Stability of Grain Yield in Hybrid Rice (Oryza sativa L.)

Genotype x environment interaction and stability performance were investigated on grain yield with 12 rice genotypes in five environments. The ANOVA for grain yield revealed highly significant (P<0.01) for genotypes, environments and their interactions. The significant interaction indicated that the genotypes respond differently across the different environments. The mean grain yield value of genotypes averaged over environments indicated that BRRI 10A/ BRRI 10R (G3) had the highest (5.99 tha-1) and BRRI dhan39 (G12) the lowest yield (3.19 tha-1), respectively. In AMMI analysis, AMMI 1 biplot showed the hybrids BRRI 1A/ BRRI 827R (G1), IR58025A/ BRRI 10R(G2), BRRI 10A/BRRI 10R(G3) and BRRI hybrid dhan1(G4) have higher average mean yields with high main (additive) effects with positive IPCA1 score, but the hybrid BRRI 10A/BRRI 10R(G3) being the overall best. Hence, the genotype G3 would be considered more adapted to a wide range of environments than the rest of genotypes. Environments, such as Gazipur (E1) and Jessore (E5) could be regarded as a more stable site for high yielding hybrid rice improvement than other location for grain yield due to IPCA score near zero which had no interaction effect. In AMMI 2 biplot, Comilla (E2) and Rangpur (E4) are the most discriminating environments, while BRRI 1A/ BRRI 827R (G1) and Heera 99-5 (G9) are the most responsive genotypes.

 
  • Share this page
  • Facebook
  • Twitter
  • LinkedIn
  • Google+
  • Pinterest
  • Blogger
 
adwords