Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Metallurgy

Characterization of Particle Reinforced Metal Matrix Composite Processed by Powder Metallurgy Today, there is an increasing need worldwide for the advanced materials in order to obtain the desired properties. This is because a single material generally cannot meet the requirements of harsh engineering environments. That is why the need for composites with unique properties is growing every day. Metal matrix composites (MMC) are widely used in different industries because of their high mechanical properties and wear resistance. Aluminum matrix composites have made numerous applications in aerospace, automotive, military and electronic industry due to low density, high toughness and high corrosion resistance. The main drawback of Aluminum is its low wear resistance. This problem can be overcome by addition of ceramic particles. Addition of ceramic particles to aluminum matrix would improve the strength, hardness, wear resistance, and corrosion resistance of the matrix. Particle reinforcements are more favorable than fiber type, due to better control of microstructure and mechanical properties, by varying the size and the volume fraction of the reinforcement. Among the ceramic reinforcements, Al2O3 is favorable since it does not react with the matrix at high temperatures and does not create undesired phases. Powder metallurgy is considered as a highly flexible technique in producing metal-matrix composites. An important advantage of this method is its low processing temperature compared to melting techniques. Therefore, interaction between the matrix and the reinforcement phases is prevented. On the other hand, good distribution of the reinforcing particles can be achieved. Another advantage of powder metallurgy technique is in its ability to manufacture near net shape product at low cost. Extrusion can be applied from the beginning of production or as a supplementary step after compaction.

Read More: https://www.omicsonline.org/open-access/2168-9806/2168-9806-2-111.pdf

  • Share this page
  • Facebook
  • Twitter
  • LinkedIn
  • Google+
  • Pinterest
  • Blogger
Top