alexa An Efficient Classification Mechanism Using Machine Learning Techniques For Attack Detection From Large Dataset
ISSN ONLINE(2319-8753)PRINT(2347-6710)

International Journal of Innovative Research in Science, Engineering and Technology
Open Access

Like us on: https://twitter.com/ijirset_r
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

An Efficient Classification Mechanism Using Machine Learning Techniques For Attack Detection From Large Dataset

Vineet Richhariya1,Dr. J.L.Rana2,Dr. R.K.Pandey3,Dr. R.C.Jain4
Dept. of CSE, LNCT, Bhopal, Madhya Pradesh,India1
Dept. of CSE, RRIST,Bhopal, Madhya Pradesh,India2
Dept. of CSE, BU UIT,Bhopal, Madhya Pradesh,India3 Dept. of CSE,SATI, Bhopal, Madhya Pradesh ,India4
Related article at Pubmed, Scholar Google
 

Abstract

Recent internet based communication technology has an important part in our life. Cyber based communication and networks connections are very huge not just in the terms of size, but also in the terms of changing the services offered and the mobility of users that make them more vulnerable to various kinds of complex attacks. Security is the main issue of networking, as malicious activities perform in the network by inside and outside users. There are number of intrusions present in the network. There are number of strategy, which have been developed in order to detect malicious activities. But a single algorithm does not correctly classify the malicious activity. In this paper, we have used machine learning approaches based on K-mean clustering and Naive Bayesian, to efficiently detect the intrusions present in the network. These algorithms have resulted in improved Precision, and reduce the false positive rate in order to provide better performance as compared to some exiting research works

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords