alexa An Efficient Design of Adder using Ultra Low Voltage C
ISSN ONLINE(2278-8875) PRINT (2320-3765)

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

An Efficient Design of Adder using Ultra Low Voltage CMOS Logic

P.Premkumar and S.Nandhini
Assistant professor, Dept. of ECE, Nandha Engineering College, Erode, Tamilnadu, India
Related article at Pubmed, Scholar Google
 

Abstract

A static CMOS inverter does not dissipate power during the absence of transients on the input. During a transient in the input, there will be a time period in which both the NMOS Transistor and PMOS Transistor will conduct, causing a short circuit to flow from supply to ground for an inverter without load. For a CMOS circuit, the total power dissipation, includes dynamic and static components during the active mode of operation. To overcome the drawback of Complementary inverter, the ULV inverters are used in the design. The dynamic power consumption is reduced significantly with reduced supply voltage. The static power consumption is more dependent on the transistor threshold voltage. Scaling the supply voltage and threshold voltage reduces the dynamic power dissipation and static power dissipation respectively. In order to achieve high performance for low power consideration, the threshold voltage is scaled along with the supply voltage. The power consumption depends on the recharge voltage and the supply voltage. Therefore optimizing the supply voltage and recharge voltage results in reduced power consumption. Ultra Low Voltage Low Power CMOS Inverter the offset voltage is scaled along with the threshold voltage. The Ultra Low Voltage Inverter is configured to low power compared to that compared to that of a complementary inverter. A complementary inverter is designed using Tanner EDA Tool. The complementary inverter is used as the basic module for the design of the full adder. The power consumed by the full adder which is designed using the complementary inverter is calculated. Similarly, the Ultra Low Voltage Inverter is designed by Tanner EDA Tool. The Ultra Low Voltage Inverter is used as the basic module for the design of the full adder. The power consumed by the full adder which is designed using the Ultra Low Voltage Inverter is calculated. The objective is to prove that the power consumed by the Ultra Low Voltage Inverter is lower than that of the complementary inverter. Thus, the Ultra Low Voltage Inverter is configured to operate at low power compared to that of the complementary inverter. The logos presented here are designed for the 90nm process using Tanner EDA Tool.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords