alexa Cross Domain Opinion Mining in Synonymically Structure
ISSN ONLINE(2319-8753)PRINT(2347-6710)

International Journal of Innovative Research in Science, Engineering and Technology
Open Access

Like us on: https://twitter.com/ijirset_r
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Special Issue Article

Cross Domain Opinion Mining in Synonymically Structured Database

Merlin Archana,Karthikeyan.R
  1. M. E Scholar, Dept of Computer Science & Engineering, PSNA College of Engineering & Technology, Dindigul, Anna University, Chennai, India.
  2. Associate Professor, Dept of Computer Science & Engineering, PSNA College of Engineering & Technology, Dindigul, Anna University, Chennai, India.
Related article at Pubmed, Scholar Google
 

Abstract

Opinion mining aims at classifying sentiment data into polarity categories positive (or) negative.Opinion mining is the field of analyze the people’s opinions, sentiments, attitudes and emotions from written language. It has been important for many applications such as opinion summarization, opinion integration and review spam identification. On average, human process six articles per hour against the machine’s throughput of 10 per second. However, the opinion information is often unstructured and/or semi-structured data in the internet. Online product reviews are often unstructured, subjective, and hard to digest within a short time period. The main objective of our proposed work is to determine the human opinion from text written in the web page automatically. Sentiment classification aims to automatically predict sentiment polarity of users publishing product based sentiment data. Applying sentiment classifier results in poor performance because each domain using different sentiment word. In order to train a binary classifier from one or more domains we propose a method to overcome the problem of existing cross domain sentiment classification methods. First we create a synonym database for both source and target domains and perform pos tagging. A product based sentiment classification using spectral clustering algorithm to align the domain specific words from different domains into unified clusters for opinion classification is developed. Sentiment sensitivity is achieved with the help of synonym database by measuring the distributed similarity between the words. To investigate the effectiveness of our method, we have compared it with several algorithms and develop a robust and generic cross-domain sentiment classifier.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords