alexa Design and Implementation of VLSI Fuzzy Classifier for
ISSN ONLINE(2319-8753)PRINT(2347-6710)

International Journal of Innovative Research in Science, Engineering and Technology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Special Issue Article

Design and Implementation of VLSI Fuzzy Classifier for Biomedical Application

Jothi. M, Balamurugan. N. B, Harikumar. R
  1. Department of IT, K.L.N College of Engineering, Madurai, India.
  2. Department of ECE, Thiagarajar College of Engineering, Madurai, India.
  3. Department of ECE, Bannari Amman Institute of Technology, Sathy , India.
Related article at Pubmed, Scholar Google


In this world diabetes has become one of the greatest deadly diseases. An estimated 347 million people were affected due to this. With numerous problems diabetes also produces epilepsy. It is a brain disorder in which cluster of brain nerve cells signal abnormally. This worst condition leads to identify the precise classifier for the diabetic epilepsy risk level classification. For the classifier reliable fuzzy rule model is used. In the two input rule model heterogeneous fuzzy system and homogeneous fuzzy system have been analysed. With the simplified single input rule model SIRM fuzzy system is proposed. Both the fuzzy system has been individually tested for all the cerebral blood flow (CBF) level through the FPGA which can act as a Reconfigurable computing. The CBF, EEG signal features and aggregation operators are taken as an input parameter. The fuzzy processor is tested for the 200 cases of known diabetic patients and validated for 100 cases. All these were first analysed in matlab, then coded and simulated in VHDL after that synthesized in FPGA. Quality value and performance index has been calculated individually to select the better fuzzy classifier. Simulation and synthesis has been performed in windows and Open source environment. For all the CBF value with minimized false level this system has been checked for the various device families like Spartan and Virtex. The area, power and timing analysis of a fuzzy classifier has been checked out. The FPGA results were compared with matlab results. This result indicates FPGA output closely follows the matlab results. The tuned SIRM with five rules is selected which has the highest performance among all the system with 98.58% and quality value of 36.56. The average performance obtained for the VLSI system is 98.28.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version