alexa Identifying Class Features and Categorization on Healt
ISSN ONLINE(2319-8753)PRINT(2347-6710)

International Journal of Innovative Research in Science, Engineering and Technology
Open Access

Like us on: https://twitter.com/ijirset_r
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Special Issue Article

Identifying Class Features and Categorization on Health Care Data

P. Jamuna, G. Mohana Prabha
  1. PG Student, Department of CSE, M.Kumarasamy College of engineering, Karur, India
  2. Assistant Professor, Department of CSE, M.Kumarasamy College of engineering, Karur, India
Related article at Pubmed, Scholar Google
 

Abstract

Finding the patterns and outliers is one of the major problems in the field of data mining. Especially in the field of health care analysis has become difficult to predict the patterns and decision making. Classification techniques are used to identify the transaction label. The classification techniques are used to collect the patterns in the learning phase and detect the outliers in training phase. In health care analysis, only classifications are limited with two class levels as positive and negatives. The symptoms of patients are collected and categorized into patterns then by using the patterns; they detect the severity level of diseases. The proposed system mainly focuses on detecting the severity level of patients by enhancing the boundary classifications. This idea can be achieved by critical nuggets which is a record or attribute used to define classification where that attribute considered as the deciding authority. The classification accuracy can be improved with critical nuggets and enhancing to support multi class (low, medium, high and normal) and multiple attribute environment.The critical nuggets identification and classification scheme is improved to support multiple classes. The system can be adopted to handle mixed attribute data values. The boundary approximation algorithm is enhanced to reduce the detection complexity. Post processing operations are tuned to identify classes for multiple category data environment.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords