alexa Intelligent Path Planning Human Mimic - Biped Walking Robot (Height Sensor Based Control)
ISSN ONLINE(2319-8753)PRINT(2347-6710)

International Journal of Innovative Research in Science, Engineering and Technology
Open Access

Like us on: https://twitter.com/ijirset_r
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Special Issue Article

Intelligent Path Planning Human Mimic - Biped Walking Robot (Height Sensor Based Control)

P.Raju1 and G.Muralidharan2
  1. M.E Mechatronics, Department of Production Technology, Madras Institute of Technology, Anna University, Chennai, India
  2. Department of Production Technology, Madras Institute of Technology, Anna University, Chennai, India
Related article at Pubmed, Scholar Google
 

Abstract

A Bipedal robots have been considered as the best means of locomotion on any irregular surfaces. But achieving stability of the robot during walking is difficult. Several studies have been proposed for achieving stability. This paper discusses the overview of various approaches that have been designed so far for achieving stability during walking. The main objective of this paper is to construct a bipedal robot with height sensor at the foot to measure the robot position coordinates. In order to make a stable walk, the position vector coordinates has to be calculated. The position vector coordinate is computed by Denavit Hartenberg representation and inverse kinematics. The DH representation is used to find the coordinates relative to the joint angles of the robot. The measured coordinates are then used to control the joint angle that controls the robot walking. This paper also discusses about the force torque controlled actuation of the joint motor of the robot during walking on uneven and non-linear surfaces. The torso is designed to make the robot walking upright by itself. The trajectory of the robot can be identified by placing the height sensor at the robot foot. This sensor reads the Z axis value as the robot is walking on the floor. By using this measured Z axis and known X axis values, the robot predicts its path and manipulates its trajectory by itself. The biped robot stability can be controlled by constantly shifting the center of gravity (COG) to the right and left leg of the robot during walking. The camera is placed at the hip to maneuver the obstacles along the path. The Mathematical modelling of the biped robot is done to find the torque acting at the joints. The computed point (position vector of the foot) coordinates along the trajectory is then proved through the simulation using MATLAB/Simulink.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords