alexa Novel Approach in Face Recognition Using Hieratical Mu
ISSN ONLINE(2319-8753)PRINT(2347-6710)

International Journal of Innovative Research in Science, Engineering and Technology
Open Access

Like us on: https://twitter.com/ijirset_r
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Special Issue Article

Novel Approach in Face Recognition Using Hieratical Multiscale Local Binary Pattern with Elm Classifier

 
To read the full article Peer-reviewed Article PDF image

Abstract

This paper presents a efficient facial image recognition based on multi scale local binary pattern (LBP) texture features .It’s a fast and simple for implementation, has shown its superiority in face recognition. To extract representative features, “uniform” LBP was proposed and its effectiveness has been validated. However, all “non-uniform” patterns are clustered into one pattern, so lot of useful information is lost. In this study, propose to build a hieratical multiscale LBP histogram for an image. The face image is divided into several regions from which the LBP feature distributions are extracted and concatenated into an enhanced feature vector to be used as a face descriptor. The useful information of “non-uniform” patterns at large scale is dug out from its counterpart of small scale, The performance of the proposed method is that it can fully utilize LBP information while it does not need any training step, That classification we introduce ELM classifier with LBP, and then Performance of the feature extraction method to be evaluated by Elm classifier. Which may be sensitive to training samples assessed in the face recognition problem under different challenges, other applications and several extensions are also discussed. The main advantage of the proposed scheme is that it can fully utilize LBP information while it does not need any training steps for extract the features, which may be sensitive to training samples. Experiments on ORL face database data base show the effectiveness of the proposed method. KEYWORDS— Facial image representation, local binary pattern, multiscale, component based face recognition, texture feature, Extreme Learning machine.

Share This Page

Additional Info

Loading
Loading Please wait..
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords