alexa Abstract | Arithmetic Unit Based Reconfigurable Approximation Technique for Video Encoding
ISSN ONLINE(2278-8875) PRINT (2320-3765)

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article Open Access

Abstract

The research community in the last few years from the field of approximate computing has received significant attention, particularly in the context of different signal processing. Image and video compression algorithms such as JPEG, MPEG and so on, which can be exploited to realize highly power-efficient implementations of these algorithms. However, existing approximate architectures typically fix the level of hardware approximations statically and are not adaptive to input data. This project addresses this issue by proposing a reconfigurable approximate for MPEG encoders that optimizes power consumption with the aim of maintaining a particular peak signal-to-noise ratio threshold for any video. I design reconfigurable adder/sub tractor blocks, and subsequently integrate these blocks in the motion estimation and discrete cosine transform modules of the MPEG encoder. I propose two heuristics for automatically tuning the approximation degree of the RABs in these two modules during runtime based on the characteristics of each individual video. Dynamically adjusting the degree of hardware approximation based on the input video respects the given quality bound PSNR degradation across different videos while power saving a dual mode full adder is greater than the full adder, when compared to existing implementations.

To read the full article Peer-reviewed Article PDF image

Author(s): J.Jayakodi, K.Sagadevan

Keywords

Approximate circuits, low power design, approximate computing, quality configurable, Electronic Materials, Optical Communication, Electric Drivers and Application.

Share This Page

Additional Info

Loading
Loading Please wait..
 
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords