alexa A Bacillus Strain Able to Hydrolyze Alpha- and Beta-Keratin

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

A Bacillus Strain Able to Hydrolyze Alpha- and Beta-Keratin

The ability to hydrolyze keratin, a rigid and strongly cross-linked protein in the waste of poultry feather and sheep wool, has made keratinase production by microorganisms highly important to the biotechnological industry. A proteindegrading bacterium (C4) was isolated from compost. Based on morphology and biochemical tests, along with 16S rRNA sequencing, the isolated C4 was tentatively identified as Bacillus sp. C4 (2008). The proteolytic activity of the Bacillus sp. C4 strain was broadly specific; it degraded keratinous and non-keratinous proteins to different degrees. Pea pods as substrate generated the highest protease production, followed by soybean meal and sheep wool. Notwithstanding, using wool keratin as a sole source of carbon and nitrogen yielded the highest level of soluble proteins. Furthermore, the C4 bacterium grew well, and produced a significant level of keratinase when using wool and feather as substrates. Supplementing the medium with yeast extract and peptone shortened the time required for feather degradation, but delayed the onset of the wool keratin hydrolysis with two days. The predominant amino acids released in feather hydrolysate were tyrosine, phenylalanine, and histidine. In contrast, the wool lysate was rich in aspartic acid, methionine, tyrosine, phenylalanine, histidine, and lysine. Results established that utilizing the C4 strain for keratin degradation in waste management holds considerable potential.

Citation: Fellahi S, Zaghlou TI, Feuk-Lagerstedt E, Taherzadeh MJ (2014) A Bacillus Strain Able to Hydrolyze Alpha- and Beta-Keratin. J Bioprocess Biotech 4:181 doi: 10.4172/2155-9821.1000181

  • Share this page
  • Facebook
  • Twitter
  • LinkedIn
  • Google+
  • Pinterest
  • Blogger