alexa Leukemia like Achilles, has its own weakness

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Recommended Conferences

Global Summit On Oncology and Breast Cancer

Vienna, Austria

Global Summit on Oncology and Cancer Therapy

New York, USA

International Conference on Cancer Treatment

New York, USA
Leukemia like Achilles, has its own weakness

Leukemia cells from patients suffering from chronic myeloid leukemia, especially in the advanced stage, lack one of the proteins: the famous BRCA1. Importantly, the protein is not present even if the patient carries the proper, not mutated gene responsible for BRCA1 production. Scientists from the Nencki Institute, Warsaw, Poland, showed that BRCA1 deficiencies in case when the gene is functional are caused by defects in the protein synthesis process. Such discovery not only explains the mechanism which supports leukemia development, but also uncovers its weakness. Results of this project performed in collaboration with the group of Prof. Tomasz Skorski from the Temple University School of Medicine in Philadelphia might lead to improvement of diagnostics in leukemia and in the future it might benefit in development of better, more efficient therapies leading to cure of patients. Chronic Myeliod Leukemia (CML) is diagnosed in about 25% of adult leukemia patients. The disease is caused by the translocation between chromosomes 9 and 22. This leads to generation of the fusion chromosome, known as Philadelphia chromosome, and a new fusion gene coding a new protein: BCR-ABL1 kinase. The presence of BCR-ABL1 kinase results in activation of signaling pathways, which promote and are responsible for development of chronic myeloid leukemia. Therapeutic regimes routinely used in CML usually do not cure patients. They allow to control the chronic phase of the disease and delay advanced phases, however they do not protect from resistance. Therapies based on the synthetic lethality open new possibilities to develop novel, personalized therapies, which can eliminate leukemia cells, including the leukemia stem cells, which are responsible for disease relapse and malignant progression

  • Share this page
  • Facebook
  • Twitter
  • LinkedIn
  • Google+
  • Pinterest
  • Blogger