Dersleri yüzünden oldukça stresli bir ruh haline sikiş hikayeleri bürünüp özel matematik dersinden önce rahatlayabilmek için amatör pornolar kendisini yatak odasına kapatan genç adam telefonundan porno resimleri açtığı porno filmini keyifle seyir ederek yatağını mobil porno okşar ruh dinlendirici olduğunu iddia ettikleri özel sex resim bir masaj salonunda çalışan genç masör hem sağlık hem de huzur sikiş için gelip masaj yaptıracak olan kadını gördüğünde porn nutku tutulur tüm gün boyu seksi lezbiyenleri sikiş dikizleyerek onları en savunmasız anlarında fotoğraflayan azılı erkek lavaboya geçerek fotoğraflara bakıp koca yarağını keyifle okşamaya başlar

GET THE APP

Selenium Form-Dependent Anti-Carcinogenesis: Preferential Elimination of Oxidant-Damaged Prostate Cancer Cell Populations by Methylseleninic Acid is Not Shared by Selenite Emily C Chiang

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Selenium Form-Dependent Anti-Carcinogenesis: Preferential Elimination of Oxidant-Damaged Prostate Cancer Cell Populations by Methylseleninic Acid is Not Shared by Selenite Emily C Chiang

Selenium has received considerable attention as a cancer preventive agent. But the puzzling, disquieting results of the Selenium and Vitamin E Cancer Prevention Trial (SELECT) have called into question how much is really understood about the biology behind selenium and cancer risk. This predicament should provide researchers with a renewed stimulus for exploring mechanisms of selenium anti-carcinogenesis. One such line of inquiry is homeostatic housecleaning — that selenium can preferentially eliminate DNA-damaged cell populations through apoptosis, consistent with the decreased DNA damage and increased apoptosis observed in the prostate of selenium-replete dogs after receiving additional dietary selenium supplementation. Because growing experimental evidence suggests the anti-carcinogenic effects of selenium on prostatic cells are form-dependent and apoptosis is a DNA damage response, the aim of this research was to determine whether selenite, a form of selenium that induces DNA damage, possesses potent homeostatic housecleaning activity. To test this hypothesis, we exposed human and canine prostate cancer cells to non-cytotoxic concentrations of hydrogen peroxide (H2O2) to create cell populations with higher levels of oxidant-induced DNA damage, and then evaluated the extent to which oxidant damage sensitizes prostate cancer cell populations to selenite-triggered apoptosis compared to apoptosis triggered by methylseleninic acid (MSA), a non-DNA damaging methylselenol precursor we previously showed to have strong homeostatic housecleaning activity. In this brief communication, we report that non-cytotoxic oxidant-induced damage does not sensitize prostate cancer cell populations to selenite-triggered apoptosis. Intensity of apoptosis triggered by MSA in H2O2-damaged prostate cancer cells was 3 times higher than undamaged cell populations not exposed to H2O2 (P ≤ 0.01). In contrast, neither human nor canine prostate cancer cells with oxidant-induced damage had a significant increase in intensity of selenite-triggered apoptosis compared to undamaged cells. The divergent results between MSA and selenite in our experiments contribute to a growing catalogue of observations that suggest there are important form-dependent differences in the extent to which selenium can impact the emergence of prostate cancer. By carefully documenting the form-dependent biological effects of selenium and other nutrients, we commit ourselves to more precisely qualifying the implications of laboratory results and to more carefully designing and interpreting the results of large-scale human trials.

Citation: Chiang EC, Bostwick DG, Waters DJ (2015) Selenium Form-Dependent Anti-Carcinogenesis: Preferential Elimination of Oxidant-Damaged Prostate Cancer Cell Populations by Methylseleninic Acid is Not Shared by Selenite. Vitam Miner 4:126. doi: 10.4172/2376-1318.1000126

  • Share this page
  • Facebook
  • Twitter
  • LinkedIn
  • Google+
  • Pinterest
  • Blogger
Top