alexa Volatile Organic Compounds in Headspace over Electrical Components at 75 to 200°C Part 2. Analytical Response with Gas Chromatography-Differential Mobility Spectrometry for Airborne Vapor Monitoring.

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Volatile Organic Compounds in Headspace over Electrical Components at 75 to 200°C Part 2. Analytical Response with Gas Chromatography-Differential Mobility Spectrometry for Airborne Vapor Monitoring.

Volatile organic compounds (VOCs) emitted into headspace over discrete electronic components including resistors, capacitors, diodes, transistors, and transformers were identified and quantitatively determined in Part 1 of this series using gas chromatography/mass spectrometry. Vapors emissions of VOCs were characteristic of each component and headspace concentrations increased with temperature and persisted with time in most instances. Technology suitable for routine continuous monitoring of air quality based on gas chromatography/differential mobility spectrometry (GC/DMS) was evaluated with the same electronic components here, Part 2 of this series. Distinctive patterns in plots of ion peak intensity, retention time, and compensation voltage were obtained from VOCs from resistors, capacitors, and insulation from wires of a transformer held at 200°C for ten minutes. Intensity of response and analytically rich information produced by GC/DMS suggest further utility also as an air quality monitor or smart smoke alarm with electronics-dense habitats in spacecraft or offices and industrial venues.

Citation: Eiceman GA, Paz ND, Rodriguez JE (2014) Volatile Organic Compounds in Headspace over Electrical Components at 75 to 200°C Part 2. Analytical Response with Gas Chromatography-Differential Mobility Spectrometry for Airborne Vapor Monitoring. J Environ Anal Chem 1:116. doi: 10.4172/JREAC.1000116

 
  • Share this page
  • Facebook
  • Twitter
  • LinkedIn
  • Google+
  • Pinterest
  • Blogger