Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

A canonical semi-classical star product

We study the Maurer-Cartan equation of the pre-Lie algebra of graphs controlling the deformation theory of associative algebras. We prove that there is a canonical solution (choice independent) within the class of graphs without circuits, i.e. at the level of the free operad, without imposing the Jacobi identity. The proof is a consequence of the unique factorization property of the pre-Lie algebra of graphs (tree operad), where composition is the insertion of graphs. The restriction to graphs without circuits, i.e. at “tree level”, accounts for the interpretation as a semi-classical solution. The fact that this solution is canonical should not be surprising, in view of the Hausdorff series, which lies at the core of almost all quantization prescriptions.

  • Share this page
  • Facebook
  • Twitter
  • LinkedIn
  • Google+
  • Pinterest
  • Blogger
Top