Aircraft engine technology has evolved and matured over a 70 year period under a continous pressure to become more sustainable, fuel efficient, noise efficient, etc. while ensuring robustness and cost efficiency in production and product operation through life. This paper addresses how current challenges, trends and practices enable the introduction of competitive production and through life operation support into new aircraft engine products. Specifically, the area of structural jet engine sub-structures and components is addressed, where product optimization is dominated by weigth optimization, but also characterised by increased expectations of functionality. As a means, novel manufacturing processes are introduced, and one means is to adopt a so called fabrication approach, where the component is build based on assemlying sub-components with better controlled properties into a component using various joining technologies such as welding. The paper presents a framework based on tigther refining a systems engineering and requirements engineering approach that, combined with a set-based engineering approach, allow for building of re-useable and adaptable engineering methods. Through systematically building this framework, and making use of state of the art modeling and simulation technologies, the introduction of the novel technologies necessarily to increase the engine sub-system performance can be realized without compromizing risk and cost.