alexa Size-Separation of Silver Nanoparticles Using Sucrose Gradient Centrifugation

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Recommended Conferences

Frontiers in Catalysis and Chemical Engineering

Amsterdam, Netherlands
Size-Separation of Silver Nanoparticles Using Sucrose Gradient Centrifugation

Size and shape distributions of nanoparticles can drastically contribute to the overall properties of nanoparticles, thereby influencing their interaction with different chemotherapeutic molecules, biological organisms and or materials and cell types. Therefore, to exploit the proper use of nanoparticles for various biomedical and biosensor applications, it is important to obtain well-separated monodispersed nanoparticles. However, gaining precise control over the morphological characteristics of nanoparticles during their synthesis is often a challenging task. Consequently, postsynthesis separation of nanoparticles is necessary. In the present study, demonstration on the successful onepot post-synthesis separation of anisotropic silver nanoparticles to near monodispersities using sucrose density gradient sedimentation. The separation of the nanoparticles was evidenced based on optical confirmation, and spectrophotometric and transmission electron microscopy measurements. Our results clearly demonstrate the facile separation of anisotropic silver nanoparticles using sucrose density gradient sedimentation and can enable the use of nanoparticles for various labeling, detection and biomedical applications.

 

Citation: Suresh AK, Pelletier DA, Moon JW, Phelps TJ, Doktycz MJ (2015) Size-Separation of Silver Nanoparticles Using Sucrose Gradient Centrifugation. J Chromatogr Sep Tech 6:283. doi:10.4172/2157-7064.1000283

  • Share this page
  • Facebook
  • Twitter
  • LinkedIn
  • Google+
  • Pinterest
  • Blogger
Top