Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Numerical and Experimental Study on the Ability of Dynamic

Both computational fluid dynamics, using two- and three-dimensional commercial flow solvers (FLUENT), and experimental analysis (Particle Image Velocimetry) were used to document the ability of sub-boundary layer oscillating surface perturbations (dynamic roughness) to alter the development of a leading edge vortex (LEV) on an airfoil undergoing dynamic stall. The ability to delay or instigate LEV development can potentially lead to methods that can take advantage of the sustained lift while limiting the consequences associated with the shedding of the vortex. Read More

  • Share this page
  • Facebook
  • Twitter
  • LinkedIn
  • Google+
  • Pinterest
  • Blogger
Top