A Genome-wide Association Study in the Diabetic Patients Finds the 13q35.43-35.46 Locus Associated with Estimated Glomerular Filtration Rate: The Japan Multi-Institutional Collaborative Cohort Study

Department of Food Science and Human Nutrition, Ryukoku University, Otsu, Japan
Department of Public Health, Shiga University of Medical Science, Otsu, Japan
Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Sendai, Japan
Division of Biomedical Information Analysis, Tohoku Medical Megabank Organization, Tohoku Medical University, Shiwa-gun, Iwate, Japan
Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan
Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
Laboratory of Public Health, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan
Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, Japan
Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
Department of Environmental Medicine and Infectious Disease, Kyushu University, Fukuoka, Japan
Statistical Analysis Section, Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
Department of Maxillofacial Functional Development, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
Department of Nursing Science, Tsuruga Nursing University, Tsuruga, Japan

Corresponding author: Yasuyuki Nakamura, Department of Food Science and Human Nutrition, Ryukoku University, Otsu, Japan, Tel: +81-77-559-5646; Fax: +81-77-559-5646; E-mail: nakamury@agr.ryukoku.ac.jp

Received date: July 15, 2018; Accepted date: July 19, 2018; Published date: July 27, 2018
Copyright: ©2018 Nakamura Y, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Objective: To conduct a genome-wide association studies (GWAS) to find genetic variations that affected renal function in the diabetic patients in Japan.

Research design and methods: In a Japanese population of 955 patients with type 2 diabetes mellitus (T2D), extracted from 14,091 participants appropriate for GWAS from the Japan Multi-Institutional Collaborative Cohort (J-MICC) study. Genotyping was performed at a central laboratory with use of a HumanOmniExpressExome-8 v1.2 BeadChip array. Genotype imputation was conducted with use of SHAPEIT, followed by Minimac3 software (with the 1000 Genomes phase 3 as the reference panel). We calculated the estimated glomerular filtration rate (eGFR) for each patient according to Matsuo et al. Association for the imputed variants with eGFR was performed by linear regression analysis with adjustments for age and sex.

Results: We found 77 SNVs upstream of the NBEA genes that were significantly associated with eGFR in T2D participants with P values <5 × 10^{-8}. This gene was reported as participatory in several metabolic functions and was associated with some disease conditions. However, no previous reports implied that the gene was related to nephropathy in diabetes.
Conclusion: We found the 13q35.43-35.46 locus upstream of the NBEA gene was significantly associated with eGFR in participants with T2D in a Japanese population.

Keywords: Genome-wide association study; Diabetes mellitus; Estimated glomerular filtration rate; Chronic kidney disease

Introduction

Diabetic nephropathy is the most common cause of chronic kidney disease (CKD) in developed countries [1]. The clinical characteristics do not fully predict development of nephropathy in diabetes patients. Epidemiological findings suggested genetic background plays an important role in the development of this renal disease [2,3].

There have been several genome-wide association studies (GWAS). In a recent meta-analysis by Pattaro et al. on associations of estimated glomerular filtration rate (eGFR) based on serum creatinine (Scr), cystatin C, and CKD (defined as eGFR based on Scr <60 ml/min/1.73 m²) with about 2.5 million autosomal single-nucleotide variations (SNVs) in 133,413 individuals of European ancestry in the stage 1 discovery analysis, 29 previously identified novel loci newly identified [4]. In their trans-ethnic analyses in 42,296 Asian participants, 7 out of 24 newly identified loci with eGFR based on Scr achieved direction-consistent significance. If the GWAS discovery analysis had been started in an Asian population, some different SNVs may have been found. Here we found 77 SNVs upstream of NBEA that affected renal function in a Japanese population with type 2 diabetes mellitus (T2D).

Research Design and Methodology

Study population

A cross-sectional GWAS was performed in participants at ages from 35 to 69 years in the Japan Multi-Institutional Collaborative Cohort (J-MICC) study. The participants in the J-MICC study were invited from 12 different locations in Japan between 2004 and 2013 (Number of participants: 14,539). The J-MICC study is a cohort study started in 2005 to examine interactions between gene and environment factors in lifestyle-related diseases. Minutes of the J-MICC Study were published elsewhere [5,6]. Briefly, participants answered a questionnaire regarding lifestyle and medical information, and gave a blood specimen at the time of the baseline study. The J-MICC study participants encompasses community citizens, first-visit patients to a cancer institution and health checkup examinees. Written informed consent was obtained from all participants in this study, and the study protocol was approved by the Ethics Committees of Aichi Cancer Center, Nagoya University Graduate School of Medicine, and the other participating institutions in the J-MICC study. Our present study was conducted in keeping with the principles expressed in the World Medical Association Declaration of Helsinki.

Out of 14,539 participants, 448 were excluded by the GWAS screening described below. Of the remaining 14,091 participants, we identified 1,109 with T2D by the criteria described below. Of the 1,109 participants with T2D, 154 were excluded due to missing data. As a result, we analyzed the data of 955 participants with T2D.

Genotyping and quality control filtering

Buffy coat fractions were prepared from blood specimen and stored at −80°C at the central office for J-MICC Study. DNA was prepared from alluffy coat fractions with use of a BioRobot M48 Workstation (Qiagen Group, Tokyo, Japan) at the central study office. For the specimen from two locations (Fukuoka and Kyushu-KOPS), DNA was prepared locally from specimen of whole blood with use of an automatic nucleic acid isolation system (NA-3000, Kurabo, Co., Ltd, Osaka, Japan). The 14,539 study participants from the 12 locations of the J-MICC study were genotyped at RIKEN Center for Integrative Medicine Sciences with use of a HumanOmniExpressExome-8 v1.2 BeadChip array (Illumina Inc., San Diego, CA, USA). Inconsistent sex information in 26 participants between an estimate from genotyping and the questionnaire was detected, and these participants were excluded. The identity-by-descent method supplemented in the PLINK 1.9 software [9,10] identified 388 close relationship pairs (pi-hat>0.1875) and one sample from each pair of the 388 was deleted. Principal component analysis (PCA) [11,12] with a 1000 Genomes reference panel (phase 3) [13,14] found 34 participants whose estimated ancestries were outside the Japanese population [15]. These 34 participants were excluded. In the remaining 14,091 participants, SNVs with a Hardy-Weinberg equilibrium exact test P-value <1 × 10^{-6}, and/or a genotype call rate <0.98, a departure from the allele frequency computed from the 1000 Genomes Phase 3 EAS samples, or a low minor allele frequency (MAF) <0.01, were excluded. These filtering resulted in 14,091 individuals and 570,162 SNVs.

Genotype imputation

Genotype imputation was conducted with use of SHAPEIT [16], followed by Minimac3 [17] software (with the 1000 Genomes phase 3 as the reference panel [13]). Strict quality control filters were applied.
after genotype imputation; i.e., variants with an R2<0.3 were excluded, resulting in 12,617,547 variants. Finally 4,233,797 variants with MAF <0.01 in T2D patients were removed, resulting in 8,383,750 variants for the analysis. We used Dosage Convertor software [18] to convert dosage files in VCF format from Minimac3 to PLINK formats.

Association analyses between genetic variants and eGFR in T2D

Associations between all imputed variants and eGFR were analyzed with adjustments for age and sex with use of PLINK 1.9 software. Variants achieving genome-wide significance (P<5 × 10−8) were regarded to be eGFR-associated variants. An R package for creating Q-Q plot, GWASTools was used [19]. For scatter plots of P values derived from genome-wide scan results for eGFR in T2D, a software, Haploview was used [20]. To visualize regions of interest, we used the LocusZoom program [21]. We performed replication analysis for previously-reported SNVs with use of the J-MICC samples [4,22].

Confounding factor adjustment

In 519 patients with urine protein data, the following additional association analyses were performed. Model 1: associations between imputed variants in chromosome 13 and eGFR were tested with adjustment for age and sex with use of PLINK 1.9 software. Model 2: analysis with model 1 variables plus urine protein data. Model 3: model 1 variables plus PCA components 1 to 3, which were obtained from genome-wide scan results for eGFR in T2D, a software, Haploview was used [20]. To visualize regions of interest, we used the LocusZoom program [21].

We performed replication analysis for previously-reported SNVs with use of the J-MICC samples [4,22].

Functional annotations

Genomic locations of variants found in this study were examined based on the UCSC [23] and Ensembl [24] genome browsers. Cis-eQTL pairs of variants and genes were obtained from the GTEx [25].

Results

Baseline characteristics

Baseline characteristics of the participants with T2D are shown in Table 1. The mean age of the participants was 59.1 ± 7.4 y and the percentage of women and prevalence of current smokers were 34% and 25%, respectively. Mean of BMI, Scr concentration, HbA1c, eGFR, alcohol consumption and urinary protein were 25.4 ± 4.0 kg/m^2, 0.76 ± 0.22 mg/dL, 53 ± 10 mmol/mol (7.1 ± 1.4%), 88.8 ± 29.5 ml/min/1.73 m^2, 18.4 ± 29.5 g/day and 10.3 ± 34.1 mg/dL, respectively.

<table>
<thead>
<tr>
<th>SNP</th>
<th>Chr</th>
<th>Gene</th>
<th>Position</th>
<th>EA</th>
<th>NEA</th>
<th>EA FRQ</th>
<th>β</th>
<th>SE</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs9599756</td>
<td>13</td>
<td>NBEA (upstream)</td>
<td>35435744</td>
<td>C</td>
<td>T</td>
<td>0.197</td>
<td>6.917</td>
<td>1.212</td>
<td>1.55E-08</td>
</tr>
<tr>
<td>rs77176728</td>
<td>13</td>
<td>NBEA (upstream)</td>
<td>35439902</td>
<td>A</td>
<td>T</td>
<td>0.192</td>
<td>7.096</td>
<td>1.230</td>
<td>1.08E-08</td>
</tr>
<tr>
<td>rs9599763</td>
<td>13</td>
<td>NBEA (upstream)</td>
<td>35440514</td>
<td>A</td>
<td>G</td>
<td>0.198</td>
<td>6.926</td>
<td>1.214</td>
<td>1.56E-08</td>
</tr>
<tr>
<td>rs74575233</td>
<td>13</td>
<td>NBEA (upstream)</td>
<td>35447752</td>
<td>T</td>
<td>C</td>
<td>0.196</td>
<td>6.808</td>
<td>1.220</td>
<td>3.17E-08</td>
</tr>
<tr>
<td>rs143794932</td>
<td>13</td>
<td>NBEA (upstream)</td>
<td>35450075</td>
<td>G</td>
<td>A</td>
<td>0.196</td>
<td>6.779</td>
<td>1.217</td>
<td>3.35E-08</td>
</tr>
</tbody>
</table>

Table 1: Background characteristics of the study participants.

Genome-wide association study

Among the 8,383,750 variants, genome-wide analyses with adjustment for age and sex, we found 77 SNVs upstream of the NBEA gene that were significantly associated with eGFR in participants with T2D with P values <5 × 10−8. A representative 8 SNVs are shown in Table 2. The mean age of the participants was 58.5 ± 7.6 y and the percentage of women and prevalence of current smokers were 33% and 24%, respectively. Mean of BMI, Scr concentration, HbA1c, eGFR, alcohol consumption and urinary protein were 25.4 ± 4.0 kg/m^2, 0.76 ± 0.22 mg/dL, 53 ± 10 mmol/mol (7.1 ± 1.4%), 88.8 ± 29.5 ml/min/1.73 m^2, 18.4 ± 29.5 g/day and 10.3 ± 34.1 mg/dL, respectively.

Table 2: Information for all 77 SNVs is shown in the Supplementary Information (Table S1).
We found 77 SNVs upstream of the NBEA gene that were significantly associated with eGFR in participants with T2D with $P<5\times10^{-8}$. A representative 8 SNVs are shown. Information for all 77 SNVs is shown in the supporting information (Table S1). T2D=Type 2 Diabetes Mellitus, SNP=Single Nucleotide variant, Chr=Chromosome, Position=Chromosomal Position (GRCh37/hg19), EA=Effect Allele, NEA=Non-effect Allele, FRQ=Frequency, β=Regression Coefficient for EA, SE=Standard error of effect estimate, P=Association test p-value.

Table 2: SNVs associated with eGFR in T2.

rs77941208	13	NBEA (upstream)	35451176	T	C	0.196	6.776	1.217	3.35E-08
rs76112805	13	NBEA (upstream)	35451557	G	A	0.196	6.776	1.217	3.37E-08
rs146196432	13	NBEA (upstream)	35452275	T	C	0.196	6.776	1.217	3.41E-08

Figure 1: The quantile-quantile plot of the observed P values.

Confounding factor adjustment

The results of confounding factor adjustment analysis for the representative 8 SNVs in 519 T2D patients with urine protein data are shown in Table 3. Compared to the results in all 955 T2D patients, P values were more significant and β was larger in the age sex adjusted analysis in 519 T2D patients with urine protein data (model 1). With the addition of urine protein in model 1, P values were attenuated very slightly (model 2). With the addition of PCA components to model 1, P values were somewhat attenuated (model 3). With the addition of BMI, smoking, and alcohol consumption to model 1, P values were slightly attenuated (model 4) (Table 3).

Figure 3: The 13q35.43-35.46 locus, stronger significances were observed upstream of the NBEA gene.

Functional annotations for SNVs associated with eGFR in T2D in the 13q35.43-35.46 locus

We examined the expression quantitative trait loci (eQTL) relationship between the 77 significant SNVs and NBEA gene. From the GTEx database [25], 31 eQTL hits were found, of which expression levels were significantly associated with the 13q35.43-35.46 variants ($P<1.0\times10^{-4}$; Table 4 and Supplementary Information (Table S1)).
participants in the meta-analysis conducted by Pattaro et al. [4]. Only population

Table 3: Confounding factor adjustment analyses in SNVs in chromosome 13 associated with eGFR in T2D with urine protein data.

<table>
<thead>
<tr>
<th>Position</th>
<th>Gene</th>
<th>EA</th>
<th>NEA</th>
<th>EA FRQ</th>
<th>β</th>
<th>SE</th>
<th>P</th>
<th>β</th>
<th>SE</th>
<th>P</th>
<th>β</th>
<th>SE</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>35435744</td>
<td>rs9599756</td>
<td>C</td>
<td>T</td>
<td>0.209</td>
<td>9.34</td>
<td>1.55</td>
<td>2.96E-09</td>
<td>9.24</td>
<td>1.54</td>
<td>3.95E-09</td>
<td>8.92</td>
<td>1.54</td>
<td>1.13E-08</td>
</tr>
<tr>
<td>35439902</td>
<td>rs77176728</td>
<td>A</td>
<td>T</td>
<td>0.206</td>
<td>9.35</td>
<td>1.56</td>
<td>3.76E-09</td>
<td>9.26</td>
<td>1.56</td>
<td>5.02E-09</td>
<td>8.93</td>
<td>1.55</td>
<td>1.47E-08</td>
</tr>
<tr>
<td>35440514</td>
<td>rs9599763</td>
<td>A</td>
<td>G</td>
<td>0.209</td>
<td>9.35</td>
<td>1.55</td>
<td>2.92E-09</td>
<td>9.26</td>
<td>1.55</td>
<td>3.88E-09</td>
<td>8.94</td>
<td>1.54</td>
<td>1.11E-08</td>
</tr>
<tr>
<td>35447752</td>
<td>rs74575233</td>
<td>T</td>
<td>C</td>
<td>0.211</td>
<td>8.90</td>
<td>1.55</td>
<td>1.62E-08</td>
<td>8.80</td>
<td>1.55</td>
<td>2.25E-08</td>
<td>8.53</td>
<td>1.54</td>
<td>4.99E-08</td>
</tr>
<tr>
<td>35450075</td>
<td>rs143794932</td>
<td>G</td>
<td>A</td>
<td>0.212</td>
<td>8.86</td>
<td>1.55</td>
<td>1.78E-08</td>
<td>8.76</td>
<td>1.55</td>
<td>2.48E-08</td>
<td>8.49</td>
<td>1.54</td>
<td>5.43E-08</td>
</tr>
<tr>
<td>35451176</td>
<td>rs77941208</td>
<td>T</td>
<td>C</td>
<td>0.212</td>
<td>8.86</td>
<td>1.55</td>
<td>1.78E-08</td>
<td>8.75</td>
<td>1.55</td>
<td>2.48E-08</td>
<td>8.48</td>
<td>1.54</td>
<td>5.44E-08</td>
</tr>
<tr>
<td>35451557</td>
<td>rs76112805</td>
<td>G</td>
<td>A</td>
<td>0.212</td>
<td>8.86</td>
<td>1.55</td>
<td>1.79E-08</td>
<td>8.75</td>
<td>1.55</td>
<td>2.49E-08</td>
<td>8.48</td>
<td>1.54</td>
<td>5.46E-08</td>
</tr>
<tr>
<td>35452275</td>
<td>rs146196432</td>
<td>T</td>
<td>C</td>
<td>0.215</td>
<td>8.81</td>
<td>1.55</td>
<td>2.02E-08</td>
<td>8.70</td>
<td>1.54</td>
<td>2.83E-08</td>
<td>8.44</td>
<td>1.53</td>
<td>6.04E-08</td>
</tr>
</tbody>
</table>

The results of confounding factor adjustment analysis on the representative 8 SNVs are shown. T2D=Type 2 Diabetes Mellitus, PCA=Principal Component Adjustment (components 1-3), BMI=Body Mass Index, alc=Alcohol Consumption, Position=Chromosomal position in chromosome 13 (GRCh37/hg19), EA=Effect Allele, NEA=Non-effect Allele, FRQ=Frequency, β=Regression Coefficient for EA, SE=Standard error of effect estimate, P=Association test p-value.

Table 4: Functional annotations for SNVs associated with eGFR in T2D in the 13q35.43-35.46 locus.

<table>
<thead>
<tr>
<th>SNP</th>
<th>Chr</th>
<th>Position</th>
<th>Gene (variant type)</th>
<th>EA</th>
<th>NEA</th>
<th>EA FRQ</th>
<th>β</th>
<th>SE</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs163160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Replciation of previously reported SNVs in the Asian population

We performed a replication study on the 7 out of 24 newly identified loci associated with eGFR based on Scr that achieved direction-consistent significance in the trans-ethnic analyses of Asian participants in the meta-analysis conducted by Pattaro et al. [4]. Only one SNP (rs163160) at the intron of the KCNQ1 gene was statistically significant (P=0.032, EA FRQ=0.132), however, the direction was inconsistent. We could not replicate nine SNVs at the ELMO1 gene that were reported previously in a Japanese population [22]. However, 8 SNVs at the ELMO1 gene in the present study showed significant association with eGFR (P<0.025) (Table 5).
Table 5: Replication analysis using the J-MICC samples for previously-reported SNVs.

<table>
<thead>
<tr>
<th>rsID</th>
<th>Chr</th>
<th>Position (GRCh37/hg19)</th>
<th>Gene</th>
<th>Region</th>
<th>EA</th>
<th>NEA</th>
<th>FRQ</th>
<th>β</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs799004</td>
<td>19</td>
<td>3748234</td>
<td>ELOM1</td>
<td>(intron)</td>
<td>A</td>
<td>G</td>
<td>0.021</td>
<td>-12,608</td>
<td>4,901</td>
</tr>
<tr>
<td>rs12532146</td>
<td>7</td>
<td>37353302</td>
<td>ELOM1</td>
<td>(intron)</td>
<td>C</td>
<td>T</td>
<td>0.135</td>
<td>-3,510</td>
<td>4,333</td>
</tr>
<tr>
<td>rs150130338</td>
<td>7</td>
<td>37359086</td>
<td>ELOM1</td>
<td>(intron)</td>
<td>T</td>
<td>G</td>
<td>0.016</td>
<td>-11,777</td>
<td>5,212</td>
</tr>
<tr>
<td>rs10245068</td>
<td>7</td>
<td>37365234</td>
<td>ELOM1</td>
<td>(intron)</td>
<td>A</td>
<td>C</td>
<td>0.203</td>
<td>3,308</td>
<td>1,242</td>
</tr>
<tr>
<td>rs10248478</td>
<td>7</td>
<td>37365649</td>
<td>ELOM1</td>
<td>(intron)</td>
<td>T</td>
<td>C</td>
<td>0.181</td>
<td>3,311</td>
<td>1,312</td>
</tr>
<tr>
<td>rs10243081</td>
<td>7</td>
<td>37369690</td>
<td>ELOM1</td>
<td>(intron)</td>
<td>T</td>
<td>C</td>
<td>0.173</td>
<td>3,774</td>
<td>1,355</td>
</tr>
</tbody>
</table>

Table 5: Replication analysis using the J-MICC samples for previously-reported SNVs.

Discussion

In the present GWAS of participants with T2D in a Japanese population, we found 77 novel SNVs located upstream of the \textit{NBEA} gene that were associated with eGFR. The \textit{NBEA} gene involves a member of a large, diverse group of A-kinase anchor proteins that designate the activity of protein kinase A to specific subcellular locations by binding to its type II regulatory subunits. \textit{NBEA} is expressed in blood cells, the brain, internal systems such as the kidneys and colon, and secretory systems such as the pancreas and adrenal glands [26]. A wide variety of diseases are associated with \textit{NBEA} including migraine in bipolar disorder [27], idiopathic autism [28], schizophrenia [29], major depression [30], substance abuse [30], and multiple myeloma [31,32]. Olszewski et al. found a significant association for two upstream SNVs in \textit{NBEA}, rs17775456 and rs7990537 with BMI as a continuous quality and trends for weight among the overweight adult men. They also found that Nbea+/2 mice result in moderately elevated body weight during early adulthood. Increased insulin concentrations are consistent with this phenotype [33]. Despite these, there are no reports indicating an association of...
this gene with renal function in diabetes or in general. Our findings warrant replication studies and further functional study in addition to support the observed association between SNVs located upstream of the NBEA gene locus and eGFR in T2D.

Proteinuria is a marker of nephropathy in diabetes. Plasma proteins leak into the urine in increased glomerular permeability. These proteins taken up by proximal tubular cells can initiate an inflammatory process and interstitial scarring, ending up in fibrosis [34]. An important role of advanced glycation end products in the pathogenesis of proteinuria and degenerative changes in kidney was recently recognized [35]. In one of our confounding factor adjustment analyses, the addition of urine protein in the model did not attenuate the associations of newly found SNVs located upstream of the NBEA gene with eGFR. This indicated that the gene has an effect on eGFR independently of urinary protein.

The other confounding factor adjustment analyses, adjusting for PCA scores, or for BMI, smoking and alcohol intake did not result in an alteration of the association between the gene and eGFR. The P values were more significant and \(\beta \) was larger in the age sex adjusted analysis in 1519 T2D patients with urine protein data compared to the results in all 955 T2D patients, despite a reduction in the number of participants. The reason for this finding is not clear. It is possible that data quality in T2D with urine protein data were better than in T2D without protein urine data.

The KCNQ1 gene was significant in our replication of prior reported SNVs in the Asian population. This was one of 7 replicated loci that were associated with eGFR in the trans-ethnic analyses of Asian participants in the meta-analysis study by Pat taro et al. The KCNQ1 gene involves a voltage-gated potassium channel that is required for the repolarization phase of the cardiac action potential. Disease conditions associated with KCNQ1 include Long QT Syndrome [36-41] and gestational diabetes mellitus [42]. Although we could not replicate the nine SNVs at the ELMO1 gene that were reported previously to be associated with nephropathy in diabetes in a Japanese population by Shimazaki et al. [22], we found 8 SNVs at the ELMO1 gene in the present study that showed significant association with eGFR (P<0.025). Success in replication studies of ELMO1 in non-Japanese populations was reported [43-47].

We should state the limitations of this study. First, we did not make a replication study in a different population. Second, there is not a large number of participants with T2D, because J-MICC is not a study specific for T2D. Third, we only had semi-quantitative urine protein data in a part of the patients, and we lacked important variables such as duration of T2D.

In conclusion, we have discovered that the 13q35.43-35.46 locus is associated with eGFR in T2D participants among a Japanese population. Future studies are needed to examine the biological mechanism that relates the locus and renal function in T2D.

Acknowledgment

We would like to thank all the staff of the Laboratory for Genotyping Development, Center for the Integrative Medical Sciences, RIKEN, and the staff of the BioBank Japan project.

The following grants supported fully or in part this study: Grants-in-Aid for Scientific Research for Priority Areas of Cancer (No. 17015018) and Innovative Areas (No. 221IS0001), and JSPS KAKENHI Grants (No. 16H06277 and 15H02524) from the Japanese Ministry of Education, Culture, Sports, Science and Technology, a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant B Numbers 24390165, 20390184, 17390186; (Grant-in-Aid for Young Scientists) Numbers 15K19236 and 17K15840, funding for the BioBank Japan Project from the Japan Agency for Medical Research and development since April 2015, and the Ministry of Education, Culture, Sports, Science and Technology from April 2003 to March 2015.

References
