alexa A New Architecture for Deriving Dynamic Brain-Machine
ISSN ONLINE(2320-9801) PRINT (2320-9798)

International Journal of Innovative Research in Computer and Communication Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

A New Architecture for Deriving Dynamic Brain-Machine Interfaces

T.Shanmugapriya1, S.Senthilkumar2
  1. Assistant Professor, Department of Information Technology, SSN Engg College, Chennai, Tamil Nadu, India
  2. Assistant Professor, Department of Electronics and Instrumentation, Bharath University, Chennai, Tamil Nadu, India
Related article at Pubmed, Scholar Google


Great potential exists for future Brain Machine Interfaces (BMIs) to help paralyzed patients, and others with motor disabilities, regain (artificial) motor control and autonomy. This paper describes a novel approach towards the development of new design architectures and research test-beds for advanced BMIs. It addresses a critical design challenge in deriving the functional mapping between the subject’s movement intent and actuated behavior. Currently, adaptive signal processing techniques are used to correlate neuronal modulation with known movements generated by the subject. However, with patients who are paralyzed, access to the individual’s movement is unavailable. Inspired by motor control research, this paper considers a predictive framework for BMI using multiple adaptive models trained with supervised or reinforcement learning in a closed-loop architecture that requires real-time feedback. Here, movement trajectories can be inferred and incrementally updated using instantaneous knowledge of the movement target and the individual’s current neuronal activation. In this framework, BMIs require a computing infrastructure capable of selectively executing multiple models on the basis of signals received by and/or provided to the brain in real time. Middleware currently under investigation to provide this data-driven dynamic capability is discussed.

Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version