alexa A New Single Phase Single Stage Three Level Power Fact
ISSN ONLINE(2278-8875) PRINT (2320-3765)

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

A New Single Phase Single Stage Three Level Power Factor Correction Ac/Dc Converter

 
To read the full article Peer-reviewed Article PDF image

Abstract

AC-DC power electronic converters are widely used for electrical power conversion in many industrial applications such as for telecom equipment, information technology equipment, electric vehicles, space power systems and power systems based on renewable energy resources. Conventional AC-DC converters generally have two conversion stages, an AC-DC front-end stage that operates with some sort of power factor correction to ensure good power quality at the input, and a DC-DC conversion stage that takes the DC output of the front-end converter and converts it to the desired output DC voltage. Due to the cost of having two separate and independent converters, there has been considerable research on so-called single-stage converters. Converters that can simultaneously perform AC-DC and DC-DC conversion with only a single converter stage. Elimination of one of these stages reduces the cost, weight, size, complexity and increase the overall reliability of this converter. The main focus of this thesis is on development of new and improved AC-DC singlestage converter that is based on multilevel circuit structures (topologies) and principles instead of conventional two-level the drawbacks of previous proposed converters are reviewed. A variety of new power electronic converters including new single-phase and a new DC-DC converter are then proposed. A new three-level single-stage power factor- corrected ACDC converter is presented. The proposed circuit integrates the operation of a boost power factor correction converter and a three-level DC/DC converter into one converter. The Proposed converter does not have the problem of high component stress due to high rising intermediate bus voltages that other single-stage converters have because of its three-level structure. It can operate over a wider load range with significantly less output inductor current ripple; moreover, its input current has little distortion. In the thesis, the operation of the new converter is explained in detail and analyzed, its steadystate characteristics are determined, and its design is discussed.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords