alexa Aerobic degradation of buprofezin via novel degradation intermediates by Rhodococcus sp. strain RX-3
E- ISSN: 2320 - 3528
P- ISSN: 2347 - 2286

Research & Reviews: Journal of Microbiology and Biotechnology
Open Access

Like us on: https://twitter.com/BiotechMicrobio
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Aerobic degradation of buprofezin via novel degradation intermediates by Rhodococcus sp. strain RX-3

Ruixue Li, Chun Dai, Guangli Wang*, Shaoxian Wu, Yubao Gong, Yuanyuan Jiang, Zhijia Wang, Naiyue Sun

College of Life Sciences, Huaibei Normal University, 235000, Huaibei, PR China

*Corresponding Author:
Guangli Wang
College of Life Sciences, Huaibei Normal University, 235000, Huaibei, PR China
Tel: +86 561 3803024
E-mail: [email protected]

Received date: 30/11/2015 Accepted date: 19/02/2016 Published date: 29/02/2016

 

Abstract

Buprofezin is a commonly used chemical with satisfactory efficacy against sucking insect pests, but its disposal causes serious environmental problems. In this study, a bacterial strain RX-3 isolated by continuous enrichment from buprofezin-treated soil was tested for biodegradation of buprofezin. The bacteria were most similar to Rhodococcus sp. based on their morphological, physiological and biochemical characteristics, as well as phylogenetic placement inferred from 16S rRNA gene sequence. Strain RX-3 was found capable of utilizing buprofezin as the sole source of carbon for growth over a wide range of temperature (25-45°C) and pH (5.0-9.0) conditions. It could completely degrade 60 mg/L of buprofezin within 80 h, and in the presence of metals such as Ba2+, Zn2+ and Cu2+. In addition, six newly identified metabolites formed during buprofezin degradation were detected and identified by gas chromatography-mass spectrometry (GC-MS), from which we proposed a novel degradation pathway. Our results suggest that Rhodococcus sp. RX-3 could be a potential bioremediation agent of buprofezin-contaminated environments.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords