alexa An Efficient Packet Scheduling Scheme in Wireless Sens
ISSN ONLINE(2320-9801) PRINT (2320-9798)

International Journal of Innovative Research in Computer and Communication Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

An Efficient Packet Scheduling Scheme in Wireless Sensor Networks to Prevent the Deadlock

J.Nivetha1, A.Deepa2
  1. Assistant Professor, Department of CSE, Apollo Engineering College, Chennai, Tamilnadu, India
  2. Student, M.E (CSE ), Ponnaiyah Ramajayam Institute of Technoloogy, Thanjavur, Tamilnadu, India
Related article at Pubmed, Scholar Google


Scheduling different types of packet in wireless sensor network is highly important since it ensures delivery of different types of data packets based on their priority and fairness with a minimum latency. In the existing Dynamic Multilevel Priority (DMP) packet scheduling scheme the sensor nodes are virtually organized into a hierarchical structure. Each node maintains three levels of priority queues. We classify as (i) real-time (priority 1), (ii) non-real-time remote data packet that are received from lower level nodes (priority2), and (iii) non-real-time local data packets that are sensed at the node itself (priority 3). If a real-time task holds the resources for a longer period of time, other tasks need to wait for an undefined period time, causing the occurrence of a deadlock. This deadlock situation degrades the performance of task scheduling schemes in terms of end-to-end delay. In the proposed scheme is to provide an improvement over other deadlock prevention algorithms. A process request resources; and if the resources are not available at that time, it enters a wait state and may never execute. This paper aims to present a resource allocation algorithm that ensures that the requested resources are made available to the processes while incurring lower overhead for deciding about the resource allocation.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version