alexa An Integrated Flyback Converter with an Advanced Versi
ISSN ONLINE(2278-8875) PRINT (2320-3765)

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Special Issue Article

An Integrated Flyback Converter with an Advanced Version of Multilevel Inverter Powered By Renewable Energy Sources

Karunya Christobal Lydia. S, Shanmugasundari. A,Anandhi.Y
Dept. of Electrical and Electronics Engineering, Sri Sai Ram Engineering College, Chennai, Tamil Nadu, India
Related article at Pubmed, Scholar Google
 

Abstract

There is an increasing demand of power and load shedding is preferred as a solution. An interruption for a few cycles of power supply results in loss of data, mal functioning of various sensitive equipments. A model is developed to provide uninterrupted power supply to the consumers in the event of failure of the main input source. The different modes of operation that has been developed are normal, back-up and charging. The output of the integrated flyback converter is given to the multilevel inverter. A cascaded H-bridge multilevel inverter is implemented using a single DC power source and capacitors. A standard cascaded multilevel inverter requires ‘n’ DC sources for ‘2n + 1’ levels. Without requiring transformers, the scheme proposed allows the use of a single DC power source (e.g., a battery, a fuel cell stack or photo voltaic panel) with the remaining n−1 DC sources being capacitors. The DC voltage level of the capacitors can be maintained simultaneously and a fundamental frequency switching pattern can be chosen to produce a nearly sinusoidal output. The number of levels is increased up to fifteen by adding six bidirectional switches to a H-bridge inverter. The main objectives are to improve the power quality by reducing the total harmonic distortion to a very low value and the reduction of the per unit cost of electricity.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords