alexa Behavioural Model of Adult Obesity by Childhood Predic
ISSN ONLINE(2320-9801) PRINT (2320-9798)

International Journal of Innovative Research in Computer and Communication Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Behavioural Model of Adult Obesity by Childhood Predictors using Crowd Sourcing

To read the full article Peer-reviewed Article PDF image


Childhood obesity in one of the most serious public health challenges of 21st century. Child development has different stages, so it isn’t always easy to know when a child is obese or overweight. Child development refers to the biological, psychological and behavioural changes that occur between birth and end of adolescence. Effective tools are required to determine the behaviours earlier in life and find its influence on weight gain later in life. Crowdsourcing can be used as a tool to assess childhood predictors of adult overweight or adult obesity. In our model, it describe an approach to machine science by allowing the non domain experts to collectively calculate the known and unknown predictors and provide responses to those predictors, such that they are predictive of some behavioural outcome of interest. This was done by building a Web platform and allowing the user to respond to questions which will help to predict a behavioural outcome and it also allow the user to pose new questions. These results in a dynamically building up online survey, but the result of this cooperative behaviour leads to models that can predict the user’s outcomes based on their responses to the user-generated survey questions. In our approach we develop a site that will lead to models that can predict user’s body mass index. In our approach, it also covers several areas which are identified by earlier research, such as parenting styles, dieting and healthy lifestyle. The results indicate that Crowdsourcing can reproduce already existing hypotheses and also generate new ideas. Users were able to determine the predictors for higher BMI, such as low physical activity in their lifestyle.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version